For the 34 sheep sires, the number of lambs in each of 5 foot shape classes.
alwan.lamb.Rd
For the 34 sheep sires, the number of lambs in each of 5 foot shape classes.
Usage
data("alwan.lamb")
Format
A data frame with 340 observations on the following 11 variables.
year
numeric 1980/1981
breed
breed PP, BRP, BR
sex
sex of lamb M/F
sire0
sire ID according to Alwan
shape
sire ID according to Gilmour
count
number of lambs
sire
shape of foot
yr
numeric contrast for year
b1
numeric contrast for breeds
b2
numeric contrast for breeds
b3
numeric contrast for breeds
Details
There were 2513 lambs classified on the presence of deformities in their feet. The lambs represent the offspring of 34 sires, 5 strains, 2 years.
The variables yr, b1, b2, b3 are numeric contrasts for the fixed effects as defined in the paper by Gilmour (1987) and used in the SAS example. Gilmour does not explain the reason for the particular contrasts. The counts for classes LF1, LF2, LF3 were combined.
Source
Mohammed Alwan (1983). Studies of the flock mating performance of Booroola merino crossbred ram lambs, and the foot conditions in Booroola merino crossbreds and Perendale sheep grazed on hill country. Thesis, Massey University. https://hdl.handle.net/10179/5900 Appendix I, II.
References
Gilmour, Anderson, and Rae (1987). Variance components on an underlying scale for ordered multiple threshold categorical data using a generalized linear mixed model. Journal of Animal Breeding and Genetics, 104, 149-155. https://doi.org/10.1111/j.1439-0388.1987.tb00117.x
SAS/STAT(R) 9.2 Users Guide, Second Edition Example 38.11 Maximum Likelihood in Proportional Odds Model with Random Effects https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(alwan.lamb)
dat <- alwan.lamb
# merge LF1 LF2 LF3 class counts, and combine M/F
dat$shape <- as.character(dat$shape)
dat$shape <- ifelse(dat$shape=="LF2", "LF3", dat$shape)
dat$shape <- ifelse(dat$shape=="LF1", "LF3", dat$shape)
dat <- aggregate(count ~ year+breed+sire0+sire+shape+yr+b1+b2+b3,
dat, FUN=sum)
dat <- transform(dat,
year=factor(year), breed=factor(breed),
sire0=factor(sire0), sire=factor(sire))
# LF5 or LF3 first is a bit arbitary...affects the sign of the coefficients
dat <- transform(dat, shape=ordered(shape, levels=c("LF5","LF4","LF3")))
# View counts by year and breed
libs(latticeExtra)
dat2 <- aggregate(count ~ year+breed+shape, dat, FUN=sum)
useOuterStrips(barchart(count ~ shape|year*breed, data=dat2,
main="alwan.lamb"))
# Model used by Gilmour and SAS
dat <- subset(dat, count > 0)
libs(ordinal)
m1 <- clmm(shape ~ yr + b1 + b2 + b3 + (1|sire), data=dat,
weights=count, link="probit", Hess=TRUE)
summary(m1) # Very similar to Gilmour results
ordinal::ranef(m1) # sign is opposite of SAS
## SAS var of sires .04849
## Effect Shape Estimate Standard Error DF t Value Pr > |t|
## Intercept 1 0.3781 0.04907 29 7.71 <.0001
## Intercept 2 1.6435 0.05930 29 27.72 <.0001
## yr 0.1422 0.04834 2478 2.94 0.0033
## b1 0.3781 0.07154 2478 5.28 <.0001
## b2 0.3157 0.09709 2478 3.25 0.0012
## b3 -0.09887 0.06508 2478 -1.52 0.1289
## Gilmour results for probit analysis
## Int1 .370 +/- .052
## Int2 1.603 +/- .061
## Year -.139 +/- .052
## B1 -.370 +/- .076
## B2 -.304 +/- .103
## B3 .098 +/- .070
# Plot random sire effects with intervals, similar to SAS example
plot.random <- function(model, random.effect, ylim=NULL, xlab="", main="") {
tab <- ordinal::ranef(model)[[random.effect]]
tab <- data.frame(lab=rownames(tab), est=tab$"(Intercept)")
tab <- transform(tab,
lo = est - 1.96 * sqrt(model$condVar),
hi = est + 1.96 * sqrt(model$condVar))
# sort by est, and return index
ix <- order(tab$est)
tab <- tab[ix,]
if(is.null(ylim)) ylim <- range(c(tab$lo, tab$hi))
n <- nrow(tab)
plot(1:n, tab$est, axes=FALSE, ylim=ylim, xlab=xlab,
ylab="effect", main=main, type="n")
text(1:n, tab$est, labels=substring(tab$lab,2) , cex=.75)
axis(1)
axis(2)
segments(1:n, tab$lo, 1:n, tab$hi, col="gray30")
abline(h=c(-.5, -.25, 0, .25, .5), col="gray")
return(ix)
}
ix <- plot.random(m1, "sire")
# foot-shape proportions for each sire, sorted by estimated sire effects
# positive sire effects tend to have lower proportion of lambs in LF4 and LF5
tab <- prop.table(xtabs(count ~ sire+shape, dat), margin=1)
tab <- tab[ix,]
tab <- tab[nrow(tab):1,] # reverse the order
lattice::barchart(tab,
horizontal=FALSE, auto.key=TRUE,
main="alwan.lamb", xlab="Sire", ylab="Proportion of lambs",
scales=list(x=list(rot=70)),
par.settings = simpleTheme(col=c("yellow","orange","red")) )
detach("package:ordinal") # to avoid VarCorr clash with lme4
} # }