Multi-environment trial of maize in Texas.
barrero.maize.Rd
Multi-environment trial of maize in Texas.
Usage
data("barrero.maize")
Format
A data frame with 14568 observations on the following 15 variables.
year
year of testing, 2000-2010
yor
year of release, 2000-2010
loc
location, 16 places in Texas
env
environment (year+loc), 107 levels
rep
replicate, 1-4
gen
genotype, 847 levels
daystoflower
numeric
plantheight
plant height, cm
earheight
ear height, cm
population
plants per hectare
lodged
percent of plants lodged
moisture
moisture percent
testweight
test weight kg/ha
yield
yield, Mt/ha
Details
This is a large (14500 records), multi-year, multi-location, 10-trait dataset from the Texas AgriLife Corn Performance Trials.
These data are from 2-row plots approximately 36in wide by 25 feet long.
Barrero et al. used this data to estimate the genetic gain in maize hybrids over a 10-year period of time.
Used with permission of Seth Murray.
Source
Barrero, Ivan D. et al. (2013). A multi-environment trial analysis shows slight grain yield improvement in Texas commercial maize. Field Crops Research, 149, Pages 167-176. https://doi.org/10.1016/j.fcr.2013.04.017
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(barrero.maize)
dat <- barrero.maize
library(lattice)
bwplot(yield ~ factor(year)|loc, dat,
main="barrero.maize - Yield trends by loc",
scales=list(x=list(rot=90)))
# Table 6 of Barrero. Model equation 1.
if(require("asreml", quietly=TRUE)){
libs(dplyr,lucid)
dat <- arrange(dat, env)
dat <- mutate(dat,
yearf=factor(year), env=factor(env),
loc=factor(loc), gen=factor(gen), rep=factor(rep))
m1 <- asreml(yield ~ loc + yearf + loc:yearf, data=dat,
random = ~ gen + rep:loc:yearf +
gen:yearf + gen:loc +
gen:loc:yearf,
residual = ~ dsum( ~ units|env),
workspace="500mb")
# Variance components for yield match Barrero table 6.
lucid::vc(m1)[1:5,]
## effect component std.error z.ratio bound
## rep:loc:yearf 0.111 0.01092 10 P 0
## gen 0.505 0.03988 13 P 0
## gen:yearf 0.05157 0.01472 3.5 P 0
## gen:loc 0.02283 0.0152 1.5 P 0.2
## gen:loc:yearf 0.2068 0.01806 11 P 0
summary(vc(m1)[6:112,"component"]) # Means match last row of table 6
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1286 0.3577 0.5571 0.8330 1.0322 2.9867
}
} # }