
Survey and satellite data for corn and soy areas in Iowa
battese.survey.RdSurvey and satellite data for corn and soy areas in Iowa
Usage
data("battese.survey")Format
A data frame with 37 observations on the following 9 variables.
countycounty name
segmentsample segment number (within county)
countysegsnumber of segments in county
cornhecthectares of corn in segment
soyhecthectares of soy
cornpixpixels of corn in segment
soypixpixels of soy
cornmeancounty mean of corn pixels per segment
soymeancounty mean of soy pixels per segment
Details
The data are for 12 counties in north-central Iowa in 1978.
The USDA determined the area of soybeans in 37 area sampling units (called 'segments'). Each segment is about one square mile (about 259 hectares). The number of pixels of that were classified as corn and soybeans came from Landsat images obtained in Aug/Sep 1978. Each pixel represents approximately 0.45 hectares.
Data originally compiled by USDA.
This data is also available in R packages: 'rsae::landsat' and 'JoSAE::landsat'.
Source
Battese, George E and Harter, Rachel M and Fuller, Wayne A. (1988). An error-components model for prediction of county crop areas using survey and satellite data. Journal of the American Statistical Association, 83, 28-36. https://doi.org/10.2307/2288915
Battese (1982) preprint version. https://www.une.edu.au/__data/assets/pdf_file/0017/15542/emetwp15.pdf
References
Pushpal K Mukhopadhyay and Allen McDowell. (2011). Small Area Estimation for Survey Data Analysis Using SAS Software SAS Global Forum 2011.
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(battese.survey)
dat <- battese.survey
# Battese fig 1 & 2. Corn plot shows outlier in Hardin county
libs(lattice)
dat <- dat[order(dat$cornpix),]
xyplot(cornhect ~ cornpix, data=dat, group=county, type=c('p','l'),
main="battese.survey", xlab="Pixels of corn", ylab="Hectares of corn",
auto.key=list(columns=3))
dat <- dat[order(dat$soypix),]
xyplot(soyhect ~ soypix, data=dat, group=county, type=c('p','l'),
main="battese.survey", xlab="Pixels of soy", ylab="Hectares of soy",
auto.key=list(columns=3))
libs(lme4, lucid)
# Fit the models of Battese 1982, p.18. Results match
m1 <- lmer(cornhect ~ 1 + cornpix + (1|county), data=dat)
fixef(m1)
## (Intercept) cornpix
## 5.4661899 0.3878358
vc(m1)
## grp var1 var2 vcov sdcor
## county (Intercept) <NA> 62.83 7.926
## Residual <NA> <NA> 290.4 17.04
m2 <- lmer(soyhect ~ 1 + soypix + (1|county), data=dat)
fixef(m2)
## (Intercept) soypix
## -3.8223566 0.4756781
vc(m2)
## grp var1 var2 vcov sdcor
## county (Intercept) <NA> 239.2 15.47
## Residual <NA> <NA> 180 13.42
# Predict for Humboldt county as in Battese 1982 table 2
5.4662+.3878*290.74
# 118.2152 # mu_i^0
5.4662+.3878*290.74+ -2.8744
# 115.3408 # mu_i^gamma
(185.35+116.43)/2
# 150.89 # y_i bar
# Survey regression estimator of Battese 1988
# Delete the outlier
dat2 <- subset(dat, !(county=="Hardin" & soyhect < 30))
# Results match top-right of Battese 1988, p. 33
m3 <- lmer(cornhect ~ cornpix + soypix + (1|county), data=dat2)
fixef(m3)
## (Intercept) cornpix soypix
## 51.0703979 0.3287217 -0.1345684
vc(m3)
## grp var1 var2 vcov sdcor
## county (Intercept) <NA> 140 11.83
## Residual <NA> <NA> 147.3 12.14
m4 <- lmer(soyhect ~ cornpix + soypix + (1|county), data=dat2)
fixef(m4)
## (Intercept) cornpix soypix
## -15.59027098 0.02717639 0.49439320
vc(m4)
## grp var1 var2 vcov sdcor
## county (Intercept) <NA> 247.5 15.73
## Residual <NA> <NA> 190.5 13.8
} # }