Multi-environment trial of wheat with Augmented design
belamkar.augmented.Rd
Multi-environment trial of wheat in Nebraska with Augmented design
Usage
data("belamkar.augmented")
Format
A data frame with 2700 observations on the following 9 variables.
loc
location
rep
replicate
iblock
incomplete block
gen_new
new genotype (1=yes, 0=no)
gen_check
check genotype (0=no)
gen
genotype name
col
column ordinate
row
row ordinate
yield
yield, bu/ac
Details
The experiment had 8 locations with 270 new, experimental lines (genotypes) and 3 check lines. There were 10 incomplete blocks at each location. There were 2 replicate blocks at Alliance and 1 block at all other locations. Each plot was 3 m long by 1.2 m wide.
The electronic data were found in supplement S4 downloaded from https://doi.org/10.25387/g3.6249410 The license for the data is CC-BY 4.0.
Source
Vikas Belamkar, Mary J. Guttieri, Waseem Hussain, Diego Jarquín, Ibrahim El-basyoni, Jesse Poland, Aaron J. Lorenz, P. Stephen Baenziger (2018). Genomic Selection in Preliminary Yield Trials in a Winter Wheat Breeding Program. G3 Genes|Genomes|Genetics, 8, Pages 2735–2747. https://doi.org/10.1534/g3.118.200415
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(belamkar.augmented)
dat <- belamkar.augmented
libs(desplot)
desplot(dat, yield ~ col*row|loc, out1=rep, out2=iblock)
# Experiment design showing check placement
dat$gen_check <- factor(dat$gen_check)
desplot(dat, gen_check ~ col*row|loc, out1=rep, out2=iblock,
main="belamkar.augmented")
# Belamkar supplement S3 has R code for analysis
if(require("asreml", quietly=TRUE)){
library(asreml)
# AR1xAR1 model to calculate BLUEs for a single loc
d1 <- droplevels(subset(dat, loc=="Lincoln"))
d1$colf <- factor(d1$col)
d1$rowf <- factor(d1$row)
d1$gen <- factor(d1$gen)
d1$gen_check <- factor(d1$gen_check)
d1 <- d1[order(d1$col),]
d1 <- as.data.frame(d1)
m1 <- asreml(fixed=yield ~ gen_check, data=d1,
random = ~ gen_new:gen,
residual = ~ar1(colf):ar1v(rowf) )
p1 <- predict(m1, classify="gen")
head(p1$pvals)
}
} # }