RCB experiment of spring barley in United Kingdom
besag.bayesian.Rd
RCB experiment of spring barley in United Kingdom
Format
A data frame with 225 observations on the following 4 variables.
col
column (also blocking factor)
row
row
yield
yield
gen
variety/genotype
Source
Besag, J. E., Green, P. J., Higdon, D. and Mengersen, K. (1995). Bayesian computation and stochastic systems. Statistical Science, 10, 3-66. https://www.jstor.org/stable/2246224
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(besag.bayesian)
dat <- besag.bayesian
# Yield values were scaled to unit variance
# var(dat$yield, na.rm=TRUE)
# .999
# Besag Fig 2. Reverse row numbers to match Besag, Davison
dat$rrow <- 76 - dat$row
libs(lattice)
xyplot(yield ~ rrow|col, dat, layout=c(1,3), type='s',
xlab="row", ylab="yield", main="besag.bayesian")
if(require("asreml", quietly=TRUE)) {
libs(asreml, lucid)
# Use asreml to fit a model with AR1 gradient in rows
dat <- transform(dat, cf=factor(col), rf=factor(rrow))
m1 <- asreml(yield ~ -1 + gen, data=dat, random= ~ rf)
m1 <- update(m1, random= ~ ar1v(rf))
m1 <- update(m1)
m1 <- update(m1)
m1 <- update(m1)
lucid::vc(m1)
# Visualize trends, similar to Besag figure 2.
# Need 'as.vector' because asreml uses a named vector
dat$res <- unname(m1$resid)
dat$geneff <- coef(m1)$fixed[as.numeric(dat$gen)]
dat <- transform(dat, fert=yield-geneff-res)
libs(lattice)
xyplot(geneff ~ rrow|col, dat, layout=c(1,3), type='s',
main="besag.bayesian - Variety effects", ylim=c(5,15 ))
xyplot(fert ~ rrow|col, dat, layout=c(1,3), type='s',
main="besag.bayesian - Fertility", ylim=c(-2,2))
xyplot(res ~ rrow|col, dat, layout=c(1,3), type='s',
main="besag.bayesian - Residuals", ylim=c(-4,4))
}
} # }