Multi-environment trial of corn, incomplete-block design
besag.met.Rd
Multi-environment trial of corn, incomplete-block designlocation.
Format
A data frame with 1152 observations on the following 7 variables.
county
county
row
row
col
column
rep
rep
block
incomplete block
yield
yield
gen
genotype, 1-64
Details
Multi-environment trial of 64 corn hybrids in six counties in North Carolina. Each location had 3 replicates in in incomplete-block design with an 18x11 lattice of plots whose length-to-width ratio was about 2:1.
Note: In the original data, each county had 6 missing plots. This data has rows for each missing plot that uses the same county/block/rep to fill-out the row, sets the genotype to G01, and sets the yield to missing. These missing values were added to the data so that asreml could more easily do AR1xAR1 analysis using rectangular regions.
Each location/panel is:
Field length: 18 rows * 2 units = 36 units.
Field width: 11 plots * 1 unit = 11 units.
Retrieved from https://web.archive.org/web/19990505223413/www.stat.duke.edu/~higdon/trials/nc.dat
Used with permission of David Higdon.
Source
Julian Besag and D Higdon, 1999. Bayesian Analysis of Agricultural Field Experiments, Journal of the Royal Statistical Society: Series B, 61, 691–746. Table 1. https://doi.org/10.1111/1467-9868.00201
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(besag.met)
dat <- besag.met
libs(desplot)
desplot(dat, yield ~ col*row|county,
aspect=36/11, # true aspect
out1=rep, out2=block,
main="besag.met")
# Average reps
datm <- aggregate(yield ~ county + gen, data=dat, FUN=mean)
# Sections below fit heteroskedastic variance models (variance for each variety)
# asreml takes 1 second, lme 73 seconds, SAS PROC MIXED 30 minutes
# lme
# libs(nlme)
# m1l <- lme(yield ~ -1 + gen, data=datm, random=~1|county,
# weights = varIdent(form=~ 1|gen))
# m1l$sigma^2 * c(1, coef(m1l$modelStruct$varStruct, unc = FALSE))^2
## G02 G03 G04 G05 G06 G07 G08
## 91.90 210.75 63.03 112.05 28.39 237.36 72.72 42.97
## ... etc ...
if(require("asreml", quietly=TRUE)) {
libs(asreml, lucid)
# Average reps
datm <- aggregate(yield ~ county + gen, data=dat, FUN=mean)
# asreml Using 'rcov' ALWAYS requires sorting the data
datm <- datm[order(datm$gen),]
m1 <- asreml(yield ~ gen, data=datm,
random = ~ county,
residual = ~ dsum( ~ units|gen))
vc(m1)[1:7,]
## effect component std.error z.ratio bound
## county 1324 836.1 1.6 P 0.2
## gen_G01!R 91.98 58.91 1.6 P 0.1
## gen_G02!R 210.6 133.6 1.6 P 0.1
## gen_G03!R 63.06 40.58 1.6 P 0.1
## gen_G04!R 112.1 71.59 1.6 P 0.1
## gen_G05!R 28.35 18.57 1.5 P 0.2
## gen_G06!R 237.4 150.8 1.6 P 0
# We get the same results from asreml & lme
# plot(m1$vparameters[-1],
# m1l$sigma^2 * c(1, coef(m1l$modelStruct$varStruct, unc = FALSE))^2)
# The following example shows how to construct a GxE biplot
# from the FA2 model.
dat <- besag.met
dat <- transform(dat, xf=factor(col), yf=factor(row))
dat <- dat[order(dat$county, dat$xf, dat$yf), ]
# First, AR1xAR1
m1 <- asreml(yield ~ county, data=dat,
random = ~ gen:county,
residual = ~ dsum( ~ ar1(xf):ar1(yf)|county))
# Add FA1
m2 <- update(m1, random=~gen:fa(county,1)) # rotate.FA=FALSE
# FA2
m3 <- update(m2, random=~gen:fa(county,2))
asreml.options(extra=50)
m3 <- update(m3, maxit=50)
asreml.options(extra=0)
# Use the loadings to make a biplot
vars <- vc(m3)
psi <- vars[grepl("!var$", vars$effect), "component"]
la1 <- vars[grepl("!fa1$", vars$effect), "component"]
la2 <- vars[grepl("!fa2$", vars$effect), "component"]
mat <- as.matrix(data.frame(psi, la1, la2))
# I tried using rotate.fa=FALSE, but it did not seem to
# give orthogonal vectors. Rotate by hand.
rot <- svd(mat[,-1])$v # rotation matrix
lam <- mat[,-1]
colnames(lam) <- c("load1", "load2")
co3 <- coef(m3)$random # Scores are the GxE coefficients
ix1 <- grepl("_Comp1$", rownames(co3))
ix2 <- grepl("_Comp2$", rownames(co3))
sco <- matrix(c(co3[ix1], co3[ix2]), ncol=2, byrow=FALSE)
sco <- sco
dimnames(sco) <- list(levels(dat$gen) , c('load1','load2'))
rownames(lam) <- levels(dat$county)
sco[,1:2] <- -1 * sco[,1:2]
lam[,1:2] <- -1 * lam[,1:2]
biplot(sco, lam, cex=.5, main="FA2 coefficient biplot (asreml)")
# G variance matrix
gvar <- lam
# Now get predictions and make an ordinary biplot
p3 <- predict(m3, data=dat, classify="county:gen")
p3 <- p3$pvals
libs("gge")
bi3 <- gge(p3, predicted.value ~ gen*county, scale=FALSE)
if(interactive()) dev.new()
# Very similar to the coefficient biplot
biplot(bi3, stand=FALSE, main="SVD biplot of FA2 predictions")
}
} # }