Weight of cork samples on four sides of trees
box.cork.Rd
The cork data gives the weights of cork borings of the trunk for 28 trees on the north (N), east (E), south (S) and west (W) directions.
Format
Data frame with 28 observations on the following 5 variables.
tree
tree number
dir
direction N,E,S,W
y
weight of cork deposit (centigrams), north direction
Source
C.R. Rao (1948). Tests of significance in multivariate analysis. Biometrika, 35, 58-79. https://doi.org/10.2307/2332629
References
K.V. Mardia, J.T. Kent and J.M. Bibby (1979) Multivariate Analysis, Academic Press.
Russell D Wolfinger, (1996). Heterogeneous Variance: Covariance Structures for Repeated Measures. Journal of Agricultural, Biological, and Environmental Statistics, 1, 205-230.
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(box.cork)
dat <- box.cork
libs(reshape2, lattice)
dat2 <- acast(dat, tree ~ dir, value.var='y')
splom(dat2, pscales=3,
prepanel.limits = function(x) c(25,100),
main="box.cork", xlab="Cork yield on side of tree",
panel=function(x,y,...){
panel.splom(x,y,...)
panel.abline(0,1,col="gray80")
})
## Radial star plot, each tree is one line
libs(plotrix)
libs(reshape2)
dat2 <- acast(dat, tree ~ dir, value.var='y')
radial.plot(dat2, start=pi/2, rp.type='p', clockwise=TRUE,
radial.lim=c(0,100), main="box.cork",
lwd=2, labels=c('North','East','South','West'),
line.col=rep(c("royalblue","red","#009900","dark orange",
"#999999","#a6761d","deep pink"),
length=nrow(dat2)))
if(require("asreml", quietly=TRUE)) {
libs(asreml, lucid)
# Unstructured covariance
dat$dir <- factor(dat$dir)
dat$tree <- factor(dat$tree)
dat <- dat[order(dat$tree, dat$dir), ]
# Unstructured covariance matrix
m1 <- asreml(y~dir, data=dat, residual = ~ tree:us(dir))
lucid::vc(m1)
# Note: 'rcor' is a personal function to extract the correlations
# into a matrix format
# round(kw::rcor(m1)$dir, 2)
# E N S W
# E 219.93 223.75 229.06 171.37
# N 223.75 290.41 288.44 226.27
# S 229.06 288.44 350.00 259.54
# W 171.37 226.27 259.54 226.00
# Note: Wolfinger used a common diagonal variance
# Factor Analytic with different specific variances
# fixme: does not work with asreml4
# m2 <- update(m1, residual = ~tree:facv(dir,1))
# round(kw::rcor(m2)$dir, 2)
# E N S W
# E 219.94 209.46 232.85 182.27
# N 209.46 290.41 291.82 228.43
# S 232.85 291.82 349.99 253.94
# W 182.27 228.43 253.94 225.99
}
} # }