Incomplete block alpha design
burgueno.alpha.Rd
Incomplete block alpha design
Usage
data("burgueno.alpha")
Format
A data frame with 48 observations on the following 6 variables.
rep
rep, 3 levels
block
block, 12 levels
row
row
col
column
gen
genotype, 16 levels
yield
yield
Details
A field experiment with 3 reps, 4 blocks per rep, laid out as an alpha design.
The plot size is not given.
Electronic version of the data obtained from CropStat software.
Used with permission of Juan Burgueno.
Source
J Burgueno, A Cadena, J Crossa, M Banziger, A Gilmour, B Cullis. 2000. User's guide for spatial analysis of field variety trials using ASREML. CIMMYT. https://books.google.com/books?id=PR_tYCFyLCYC&pg=PA1
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(burgueno.alpha)
dat <- burgueno.alpha
libs(desplot)
desplot(dat, yield~col*row,
out1=rep, out2=block, # aspect unknown
text=gen, cex=1,shorten="none",
main='burgueno.alpha')
libs(lme4,lucid)
# Inc block model
m0 <- lmer(yield ~ gen + (1|rep/block), data=dat)
vc(m0) # Matches Burgueno p. 26
## grp var1 var2 vcov sdcor
## block:rep (Intercept) <NA> 86900 294.8
## rep (Intercept) <NA> 200900 448.2
## Residual <NA> <NA> 133200 365
if(require("asreml", quietly=TRUE)) {
libs(asreml)
dat <- transform(dat, xf=factor(col), yf=factor(row))
dat <- dat[order(dat$xf, dat$yf),]
# Sequence of models on page 36 of Burgueno
m1 <- asreml(yield ~ gen, data=dat)
m1$loglik # -232.13
m2 <- asreml(yield ~ gen, data=dat,
random = ~ rep)
m2$loglik # -223.48
# Inc Block model
m3 <- asreml(yield ~ gen, data=dat,
random = ~ rep/block)
m3$loglik # -221.42
m3$coef$fixed # Matches solution on p. 27
# AR1xAR1 model
m4 <- asreml(yield ~ 1 + gen, data=dat,
resid = ~ar1(xf):ar1(yf))
m4$loglik # -221.47
plot(varioGram(m4), main="burgueno.alpha") # Figure 1
m5 <- asreml(yield ~ 1 + gen, data=dat,
random= ~ yf, resid = ~ar1(xf):ar1(yf))
m5$loglik # -220.07
m6 <- asreml(yield ~ 1 + gen + pol(yf,-2), data=dat,
resid = ~ar1(xf):ar1(yf))
m6$loglik # -204.64
m7 <- asreml(yield ~ 1 + gen + lin(yf), data=dat,
random= ~ spl(yf), resid = ~ar1(xf):ar1(yf))
m7$loglik # -212.51
m8 <- asreml(yield ~ 1 + gen + lin(yf), data=dat,
random= ~ spl(yf))
m8$loglik # -213.91
# Polynomial model with predictions
m9 <- asreml(yield ~ 1 + gen + pol(yf,-2) + pol(xf,-2), data=dat,
random= ~ spl(yf),
resid = ~ar1(xf):ar1(yf))
m9 <- update(m9)
m9$loglik # -191.44 vs -189.61
m10 <- asreml(yield ~ 1 + gen + lin(yf)+lin(xf), data=dat,
resid = ~ar1(xf):ar1(yf))
m10$loglik # -211.56
m11 <- asreml(yield ~ 1 + gen + lin(yf)+lin(xf), data=dat,
random= ~ spl(yf),
resid = ~ar1(xf):ar1(yf))
m11$loglik # -208.90
m12 <- asreml(yield ~ 1 + gen + lin(yf)+lin(xf), data=dat,
random= ~ spl(yf)+spl(xf),
resid = ~ar1(xf):ar1(yf))
m12$loglik # -206.82
m13 <- asreml(yield ~ 1 + gen + lin(yf)+lin(xf), data=dat,
random= ~ spl(yf)+spl(xf))
m13$loglik # -207.52
}
} # }