Row-column design
burgueno.rowcol.Rd
Row-column design
Usage
data("burgueno.rowcol")
Format
A data frame with 128 observations on the following 5 variables.
rep
rep, 2 levels
row
row
col
column
gen
genotype, 64 levels
yield
yield, tons/ha
Details
A field experiment with two contiguous replicates in 8 rows, 16 columns.
The plot size is not given.
Electronic version of the data obtained from CropStat software.
Used with permission of Juan Burgueno.
Source
J Burgueno, A Cadena, J Crossa, M Banziger, A Gilmour, B Cullis (2000). User's guide for spatial analysis of field variety trials using ASREML. CIMMYT.
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(burgueno.rowcol)
dat <- burgueno.rowcol
# Two contiguous reps in 8 rows, 16 columns
libs(desplot)
desplot(dat, yield ~ col*row,
out1=rep, # aspect unknown
text=gen, shorten="none", cex=.75,
main="burgueno.rowcol")
libs(lme4,lucid)
# Random rep, row and col within rep
# m1 <- lmer(yield ~ gen + (1|rep) + (1|rep:row) + (1|rep:col), data=dat)
# vc(m1) # Match components of Burgueno p. 40
## grp var1 var2 vcov sdcor
## rep:col (Intercept) <NA> 0.2189 0.4679
## rep:row (Intercept) <NA> 0.1646 0.4057
## rep (Intercept) <NA> 0.1916 0.4378
## Residual <NA> <NA> 0.1796 0.4238
if(require("asreml", quietly=TRUE)) {
libs(asreml,lucid)
# AR1 x AR1 with linear row/col effects, random spline row/col
dat <- transform(dat, xf=factor(col), yf=factor(row))
dat <- dat[order(dat$xf,dat$yf),]
m2 <- asreml(yield ~ gen + lin(yf) + lin(xf), data=dat,
random = ~ spl(yf) + spl(xf),
resid = ~ ar1(xf):ar1(yf))
m2 <- update(m2) # More iterations
# Scaling of spl components has changed in asreml from old versions
lucid::vc(m2) # Match Burgueno p. 42
## effect component std.error z.ratio bound
## spl(yf) 0.09077 0.08252 1.1 P 0
## spl(xf) 0.08107 0.08209 0.99 P 0
## xf:yf(R) 0.1482 0.03119 4.8 P 0
## xf:yf!xf!cor 0.1152 0.2269 0.51 U 0.1
## xf:yf!yf!cor 0.009467 0.2414 0.039 U 0.9
plot(varioGram(m2), main="burgueno.rowcol")
}
} # }