Field experiment with unreplicated genotypes plus one repeated check.
burgueno.unreplicated.Rd
Field experiment with unreplicated genotypes plus one repeated check.
Usage
data("burgueno.unreplicated")
Format
A data frame with 434 observations on the following 4 variables.
gen
genotype, 281 levels
col
column
row
row
yield
yield, tons/ha
Details
A field experiment with 280 new genotypes. A check genotype is planted in every 4th column.
The plot size is not given.
Electronic version of the data obtained from CropStat software.
Used with permission of Juan Burgueno.
Source
J Burgueno, A Cadena, J Crossa, M Banziger, A Gilmour, B Cullis (2000). User's guide for spatial analysis of field variety trials using ASREML. CIMMYT.
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(burgueno.unreplicated)
dat <- burgueno.unreplicated
# Define a 'check' variable for colors
dat$check <- ifelse(dat$gen=="G000", 2, 1)
# Every fourth column is the 'check' genotype
libs(desplot)
desplot(dat, yield ~ col*row,
col=check, num=gen, #text=gen, cex=.3, # aspect unknown
main="burgueno.unreplicated")
if(require("asreml", quietly=TRUE)) {
libs(asreml,lucid)
# AR1 x AR1 with random genotypes
dat <- transform(dat, xf=factor(col), yf=factor(row))
dat <- dat[order(dat$xf,dat$yf),]
m2 <- asreml(yield ~ 1, data=dat, random = ~ gen,
resid = ~ ar1(xf):ar1(yf))
lucid::vc(m2)
## effect component std.error z.ratio bound
## gen 0.9122 0.127 7.2 P 0
## xf:yf(R) 0.4993 0.05601 8.9 P 0
## xf:yf!xf!cor -0.2431 0.09156 -2.7 U 0
## xf:yf!yf!cor 0.1255 0.07057 1.8 U 0.1
# Note the strong saw-tooth pattern in the variogram. Seems to
# be column effects.
plot(varioGram(m2), xlim=c(0,15), ylim=c(0,9), zlim=c(0,0.5),
main="burgueno.unreplicated - AR1xAR1")
# libs(lattice) # Show how odd columns are high
# bwplot(resid(m2) ~ col, data=dat, horizontal=FALSE)
# Define an even/odd column factor as fixed effect
# dat$oddcol <- factor(dat$col
# The modulus operator throws a bug, so do it the hard way.
dat$oddcol <- factor(dat$col - floor(dat$col / 2) *2 )
m3 <- update(m2, yield ~ 1 + oddcol)
m3$loglik # Matches Burgueno table 3, line 3
plot(varioGram(m3), xlim=c(0,15), ylim=c(0,9), zlim=c(0,0.5),
main="burgueno.unreplicated - AR1xAR1 + Even/Odd")
# Much better-looking variogram
}
} # }