Multi-environment trial of maize with pedigrees
butron.maize.Rd
Maize yields in a multi-environment trial. Pedigree included.
Format
A data frame with 245 observations on the following 5 variables.
gen
genotype
male
male parent
female
female parent
env
environment
yield
yield, Mg/ha
Details
Ten inbreds were crossed to produce a diallel without reciprocals. The 45 F1 crosses were evaluated along with 4 checks in a triple-lattice 7x7 design. Pink stem borer infestation was natural.
Experiments were performed in 1995 and 1996 at three sites in northwestern Spain: Pontevedra (42 deg 24 min N, 8 deg 38 min W, 20 m over sea), Pontecaldelas (42 deg 23 N, 8 min 32 W, 300 m above sea), Ribadumia (42 deg 30 N, 8 min 46 W, 50 m above sea).
A two-letter location code and the year are concatenated to define the environment.
The average number of larvae per plant in each environment:
Env | Larvae |
pc95 | 0.54 |
pc96 | 0.91 |
ri96 | 1.78 |
pv95 | 2.62 |
pv96 | 3.35 |
Used with permission of Ana Butron.
Source
Butron, A and Velasco, P and Ordas, A and Malvar, RA (2004). Yield evaluation of maize cultivars across environments with different levels of pink stem borer infestation. Crop Science, 44, 741-747. https://doi.org/10.2135/cropsci2004.7410
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(butron.maize)
dat <- butron.maize
libs(reshape2)
mat <- acast(dat, gen~env, value.var='yield')
mat <- sweep(mat, 2, colMeans(mat))
mat.svd <- svd(mat)
# Calculate PC1 and PC2 scores as in Table 4 of Butron
# Comment out to keep Rcmd check from choking on '
# round(mat.svd$u[,1:2]
biplot(princomp(mat), main="butron.maize", cex=.7) # Figure 1 of Butron
if(require("asreml", quietly=TRUE)) {
# Here we see if including pedigree information is helpful for a
# multi-environment model
# Including the pedigree provided little benefit
# Create the pedigree
ped <- dat[, c('gen','male','female')]
ped <- ped[!duplicated(ped),] # remove duplicates
unip <- unique(c(ped$male, ped$female)) # Unique parents
unip <- unip[!is.na(unip)]
# We have to define parents at the TOP of the pedigree
ped <- rbind(data.frame(gen=c("Dent","Flint"), # genetic groups
male=c(0,0),
female=c(0,0)),
data.frame(gen=c("A509","A637","A661","CM105","EP28",
"EP31","EP42","F7","PB60","Z77016"),
male=rep(c('Dent','Flint'),each=5),
female=rep(c('Dent','Flint'),each=5)),
ped)
ped[is.na(ped$male),'male'] <- 0
ped[is.na(ped$female),'female'] <- 0
libs(asreml)
ped.ainv <- ainverse(ped)
m0 <- asreml(yield ~ 1+env, data=dat, random = ~ gen)
m1 <- asreml(yield ~ 1+env, random = ~ vm(gen, ped.ainv), data=dat)
m2 <- update(m1, random = ~ idv(env):vm(gen, ped.ainv))
m3 <- update(m2, random = ~ diag(env):vm(gen, ped.ainv))
m4 <- update(m3, random = ~ fa(env,1):vm(gen, ped.ainv))
#summary(m0)$aic
#summary(m4)$aic
## df AIC
## m0 2 229.4037
## m1 2 213.2487
## m2 2 290.6156
## m3 6 296.8061
## m4 11 218.1568
p0 <- predict(m0, data=dat, classify="gen")$pvals
p1 <- predict(m1, data=dat, classify="gen")$pvals
p1par <- p1[1:12,] # parents
p1 <- p1[-c(1:12),] # remove parents
# Careful! Need to manually sort the predictions
p0 <- p0[order(as.character(p0$gen)),]
p1 <- p1[order(as.character(p1$gen)),]
# lims <- range(c(p0$pred, p1$pred)) * c(.95,1.05)
lims <- c(6,8.25) # zoom in on the higher-yielding hybrids
plot(p0$predicted.value, p1$predicted.value,
pch="", xlim=lims, ylim=lims, main="butron.maize",
xlab="BLUP w/o pedigree", ylab="BLUP with pedigree")
abline(0,1,col="lightgray")
text(x=p0$predicted.value, y=p1$predicted.value,
p0$gen, cex=.5, srt=-45)
text(x=min(lims), y=p1par$predicted.value, p1par$gen, cex=.5, col="red")
round( cor(p0$predicted.value, p1$predicted.value), 3)
# 0.994
# Including the pedigree provided very little change
}
} # }