Germination of alfalfa seeds at various salt concentrations
carlson.germination.Rd
Germination of alfalfa seeds at various salt concentrations
Usage
data("carlson.germination")
Format
A data frame with 120 observations on the following 3 variables.
gen
genotype factor, 15 levels
germ
germination percent, 0-100
nacl
salt concentration percent, 0-2
Details
Data are means averaged over 5, 10, 15, and 20 day counts. Germination is expressed as a percent of the no-salt control to account for differences in germination among the cultivars.
Source
Carlson, JR and Ditterline, RL and Martin, JM and Sands, DC and Lund, RE. (1983). Alfalfa Seed Germination in Antibiotic Agar Containing NaCl. Crop science, 23, 882-885. https://doi.org/10.2135/cropsci1983.0011183X002300050016x
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(carlson.germination)
dat <- carlson.germination
dat$germ <- dat$germ/100 # Convert to percent
# Separate response curve for each genotype.
# Really, we should use a glmm with random int/slope for each genotype
m1 <- glm(germ~ 0 + gen*nacl, data=dat, family=quasibinomial)
# Plot data and fitted model
libs(latticeExtra)
newd <- data.frame(expand.grid(gen=levels(dat$gen), nacl=seq(0,2,length=100)))
newd$pred <- predict(m1, newd, type="response")
xyplot(germ~nacl|gen, dat, as.table=TRUE, main="carlson.germination",
xlab="Percent NaCl", ylab="Fraction germinated") +
xyplot(pred~nacl|gen, newd, type='l', grid=list(h=1,v=0))
# Calculate LD50 values. Note, Carlson et al used quadratics, not glm.
# MASS::dose.p cannot handle multiple slopes, so do a separate fit for
# each genotype. Results are vaguely similar to Carlson table 5.
## libs(MASS)
## for(ii in unique(dat$gen)){
## cat("\n", ii, "\n")
## mm <- glm(germ ~ 1 + nacl, data=dat, subset=gen==ii, family=quasibinomial(link="probit"))
## print(dose.p(mm))
## }
## Dose SE
## Anchor 1.445728 0.05750418
## Apollo 1.305804 0.04951644
## Baker 1.444153 0.07653989
## Drylander 1.351201 0.03111795
## Grimm 1.395735 0.04206377
} # }