Relative cotton yield for different soil potassium concentrations
cate.potassium.Rd
Relative cotton yield for different soil potassium concentrations
Format
A data frame with 24 observations on the following 2 variables.
yield
Relative yield
potassium
Soil potassium, ppm
Details
Cate & Nelson used this data to determine the minimum optimal amount of soil potassium to achieve maximum yield.
Note, Fig 1 of Cate & Nelson does not match the data from Table 2. It sort of appears that points with high-concentrations of potassium were shifted left to a truncation point. Also, the calculations below do not quite match the results in Table 1. Perhaps the published data were rounded?
Source
Cate, R.B. and Nelson, L.A. (1971). A simple statistical procedure for partitioning soil test correlation data into two classes. Soil Science Society of America Journal, 35, 658–660. https://doi.org/10.2136/sssaj1971.03615995003500040048x
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(cate.potassium)
dat <- cate.potassium
names(dat) <- c('y','x')
CateNelson <- function(dat){
dat <- dat[order(dat$x),] # Sort the data by x
x <- dat$x
y <- dat$y
# Create a data.frame to store the results
out <- data.frame(x=NA, mean1=NA, css1=NA, mean2=NA, css2=NA, r2=NA)
css <- function(x) { var(x) * (length(x)-1) }
tcss <- css(y) # Total corrected sum of squares
for(i in 2:(length(y)-2)){
y1 <- y[1:i]
y2 <- y[-(1:i)]
out[i, 'x'] <- x[i]
out[i, 'mean1'] <- mean(y1)
out[i, 'mean2'] <- mean(y2)
out[i, 'css1'] <- css1 <- css(y1)
out[i, 'css2'] <- css2 <- css(y2)
out[i, 'r2'] <- ( tcss - (css1+css2)) / tcss
}
return(out)
}
cn <- CateNelson(dat)
ix <- which.max(cn$r2)
with(dat, plot(y~x, ylim=c(0,110), xlab="Potassium", ylab="Yield"))
title("cate.potassium - Cate-Nelson analysis")
abline(v=dat$x[ix], col="skyblue")
abline(h=(dat$y[ix] + dat$y[ix+1])/2, col="skyblue")
# another approach with similar results
# https://joe.org/joe/2013october/tt1.php
libs("rcompanion")
cateNelson(dat$x, dat$y, plotit=0)
} # }