Germination of Orobanche seeds for two genotypes and two treatments.
crowder.seeds.Rd
Number of Orobanche seeds tested/germinated for two genotypes and two treatments.
Format
plate
Factor for replication
gen
Factor for genotype with levels
O73
,O75
extract
Factor for extract from
bean
,cucumber
germ
Number of seeds that germinated
n
Total number of seeds tested
Details
Egyptian broomrape, orobanche aegyptiaca is a parasitic plant family. The plants have no chlorophyll and grow on the roots of other plants. The seeds remain dormant in soil until certain compounds from living plants stimulate germination.
Two genotypes were studied in the experiment, O. aegyptiaca 73 and O. aegyptiaca 75. The seeds were brushed with one of two extracts prepared from either a bean plant or cucmber plant.
The experimental design was a 2x2 factorial, each with 5 or 6 reps of plates.
Source
Crowder, M.J., 1978. Beta-binomial anova for proportions. Appl. Statist., 27, 34-37. https://doi.org/10.2307/2346223
References
N. E. Breslow and D. G. Clayton. 1993. Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88:9-25. https://doi.org/10.2307/2290687
Y. Lee and J. A. Nelder. 1996. Hierarchical generalized linear models with discussion. J. R. Statist. Soc. B, 58:619-678.
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(crowder.seeds)
dat <- crowder.seeds
m1.glm <- m1.glmm <- m1.glmmtmb <- m1.hglm <- NA
# ----- Graphic
libs(lattice)
dotplot(germ/n~gen|extract, dat, main="crowder.seeds")
# --- GLMM. Assumes Gaussian random effects
libs(MASS)
m1.glmm <- glmmPQL(cbind(germ, n-germ) ~ gen*extract, random= ~1|plate,
family=binomial(), data=dat)
summary(m1.glmm)
## round(summary(m1.glmm)$tTable,2)
## Value Std.Error DF t-value p-value
## (Intercept) -0.44 0.25 17 -1.80 0.09
## genO75 -0.10 0.31 17 -0.34 0.74
## extractcucumber 0.52 0.34 17 1.56 0.14
## genO75:extractcucumber 0.80 0.42 17 1.88 0.08
# ----- glmmTMB
libs(glmmTMB)
m1.glmmtmb <- glmmTMB(cbind(germ, n-germ) ~ gen*extract + (1|plate),
data=dat,
family=binomial)
summary(m1.glmmtmb)
## round(summary(m1.glmmtmb)$coefficients$cond , 2)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.45 0.22 -2.03 0.04
## genO75 -0.10 0.28 -0.35 0.73
## extractcucumber 0.53 0.30 1.74 0.08
## genO75:extractcucumber 0.81 0.38 2.11 0.04
} # }