Multi-environment trial of maize
dasilva.maize.Rd
Multi-environment trial of maize with 3 reps.
Usage
data("dasilva.maize")
Format
A data frame with 1485 observations on the following 4 variables.
env
environment
rep
replicate block, 3 per env
gen
genotype
yield
yield (tons/hectare)
Details
Each location had 3 blocks. Block numbers are unique across environments.
NOTE! The environment codes in the supplemental data file of da Silva 2015 do not quite match the environment codes of the paper, but are mostly off by 1.
DaSilva Table 1 has a footnote "Machado et al 2007". This reference appears to be:
Machado et al. Estabilidade de producao de hibridos simples e duplos de milhooriundos de um mesmo conjunto genico. Bragantia, 67, no 3. www.scielo.br/pdf/brag/v67n3/a10v67n3.pdf
In DaSilva Table 1, the mean of E1 is 10.803. This appears to be a copy of the mean from row 1 of Table 1 in Machado. Using the supplemental data from this paper, the correct mean is 8.685448.
Source
A Bayesian Shrinkage Approach for AMMI Models. Carlos Pereira da Silva, Luciano Antonio de Oliveira, Joel Jorge Nuvunga, Andrezza Kellen Alves Pamplona, Marcio Balestre. Plos One. Supplemental material. https://doi.org/10.1371/journal.pone.0131414
Used via license: Creative Commons BY-SA.
References
J.J. Nuvunga, L.A. Oliveira, A.K.A. Pamplona, C.P. Silva, R.R. Lima and M. Balestre. Factor analysis using mixed models of multi-environment trials with different levels of unbalancing. Genet. Mol. Res. 14.
Examples
library(agridat)
data(dasilva.maize)
dat <- dasilva.maize
# Try to match Table 1 of da Silva 2015.
# aggregate(yield ~ env, data=dat, FUN=mean)
## env yield
## 1 E1 6.211817 # match E2 in Table 1
## 2 E2 4.549104 # E3
## 3 E3 5.152254 # E4
## 4 E4 6.245904 # E5
## 5 E5 8.084609 # E6
## 6 E6 13.191890 # E7
## 7 E7 8.895721 # E8
## 8 E8 8.685448
## 9 E9 8.737089 # E9
# Unable to match CVs in Table 2, but who knows what they used
# for residual variance.
# aggregate(yield ~ env, data=dat, FUN=function(x) 100*sd(x)/mean(x))
# Match DaSilva supplement 2, ANOVA
# m1 <- aov(yield ~ env + gen + rep:env + gen:env, dat)
# anova(m1)
## Response: yield
## Df Sum Sq Mean Sq F value Pr(>F)
## env 8 8994.2 1124.28 964.1083 < 2.2e-16 ***
## gen 54 593.5 10.99 9.4247 < 2.2e-16 ***
## env:rep 18 57.5 3.19 2.7390 0.0001274 ***
## env:gen 432 938.1 2.17 1.8622 1.825e-15 ***
## Residuals 972 1133.5 1.17