Multi-environment trial of wheat
digby.jointregression.Rd
Yield of 10 spring wheat varieties for 17 locations in 1976.
Format
A data frame with 134 observations on the following 3 variables.
gen
genotype, 10 levels
env
environment, 17 levels
yield
yield (t/ha)
Details
Yield of 10 spring wheat varieties for 17 locations in 1976.
Used to illustrate modified joint regression.
Source
Digby, P.G.N. (1979). Modified joint regression analysis for incomplete variety x environment data. Journal of Agricultural Science, 93, 81-86. https://doi.org/10.1017/S0021859600086159
References
Hans-Pieter Piepho, 1997. Analyzing Genotype-Environment Data by Mixed-Models with Multiplicative Terms. Biometrics, 53, 761-766. https://doi.org/10.2307/2533976
RJOINT procedure in GenStat. https://www.vsni.co.uk/software/genstat/htmlhelp/server/RJOINT.htm
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(digby.jointregression)
dat <- digby.jointregression
# Simple gen means, ignoring unbalanced data.
# Matches Digby table 2, Unadjusted Mean
round(tapply(dat$yield, dat$gen, mean),3)
# Two-way model. Matches Digby table 2, Fitting Constants
m00 <- lm(yield ~ 0 + gen + env, dat)
round(coef(m00)[1:10]-2.756078+3.272,3) # Adjust intercept
# genG01 genG02 genG03 genG04 genG05 genG06 genG07 genG08 genG09 genG10
# 3.272 3.268 4.051 3.724 3.641 3.195 3.232 3.268 3.749 3.179
n.gen <- nlevels(dat$gen)
n.env <- nlevels(dat$env)
# Estimate theta (env eff)
m0 <- lm(yield ~ -1 + env + gen, dat)
thetas <- coef(m0)[1:n.env]
thetas <- thetas-mean(thetas) # center env effects
# Add env effects to the data
dat$theta <- thetas[match(paste("env",dat$env,sep=""), names(thetas))]
# Initialize beta (gen slopes) at 1
betas <- rep(1, n.gen)
done <- FALSE
while(!done){
betas0 <- betas
# M1: Fix thetas (env effects), estimate beta (gen slope)
m1 <- lm(yield ~ -1 + gen + gen:theta, data=dat)
betas <- coef(m1)[-c(1:n.gen)]
dat$beta <- betas[match(paste("gen",dat$gen,":theta",sep=""), names(betas))]
# print(betas)
# M2: Fix betas (gen slopes), estimate theta (env slope)
m2 <- lm(yield ~ env:beta + gen -1, data=dat)
thetas <- coef(m2)[-c(1:n.gen)]
thetas[is.na(thetas)] <- 0 # Change last coefficient from NA to 0
dat$theta <- thetas[match(paste("env",dat$env,":beta",sep=""), names(thetas))]
# print(thetas)
# Check convergence
chg <- sum(((betas-betas0)/betas0)^2)
cat("Relative change in betas",chg,"\n")
if(chg < .0001) done <- TRUE
}
libs(lattice)
xyplot(yield ~ theta|gen, data=dat, xlab="theta (environment effect)",
main="digby.jointregression - stability plot")
# Dibgy Table 2, modified joint regression
# Genotype sensitivities (slopes)
round(betas,3) # Match Digby table 2, Modified joint regression sensitivity
# genG01 genG02 genG03 genG04 genG05 genG06 genG07 genG08 genG09 genG10
# 0.953 0.739 1.082 1.024 1.142 0.877 1.089 0.914 1.196 0.947
# Env effects. Match Digby table 3, Modified joint reg
round(thetas,3)+1.164-.515 # Adjust intercept to match
# envE01 envE02 envE03 envE04 envE05 envE06 envE07 envE08 envE09 envE10
# -0.515 -0.578 -0.990 -1.186 1.811 1.696 -1.096 0.046 0.057 0.825
# envE11 envE12 envE13 envE14 envE15 envE16 envE17
# -0.576 1.568 -0.779 -0.692 0.836 -1.080 0.649
# Using 'gnm' gives similar results.
# libs(gnm)
# m3 <- gnm(yield ~ gen + Mult(gen,env), data=dat) # slopes negated
# round(coef(m3)[11:20],3)
# Using 'mumm' gives similar results, though gen is random and the
# coeffecients are shrunk toward 0 a bit.
if(require("mumm", quietly=TRUE)) {
libs(mumm)
m1 <- mumm(yield ~ -1 + env + mp(gen, env), dat)
round(1 + ranef(m1)$`mp gen:env`,2)
}
} # }