Row-column experiment of spring barley, many varieties
durban.rowcol.Rd
Row-column experiment of spring barley, many varieties
Format
A data frame with 544 observations on the following 5 variables.
row
row
bed
bed (column)
rep
rep, 2 levels
gen
genotype, 272 levels
yield
yield, tonnes/ha
Details
Spring barley variety trial of 272 entries (260 new varieties, 12 control). Grown at the Scottish Crop Research Institute in 1998. Row-column design with 2 reps, 16 rows (north/south) by 34 beds (east/west). The land sloped downward from row 16 to row 1. Plot yields were converted to tonnes per hectare.
Plot dimensions are not given.
Used with permission of Maria Durban.
Source
Durban, Maria and Hackett, Christine and McNicol, James and Newton, Adrian and Thomas, William and Currie, Iain. 2003. The practical use of semiparametric models in field trials, Journal of Agric Biological and Envir Stats, 8, 48-66. https://doi.org/10.1198/1085711031265
References
Edmondson, Rodney (2020). Multi-level Block Designs for Comparative Experiments. J of Agric, Biol, and Env Stats. https://doi.org/10.1007/s13253-020-00416-0
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(durban.rowcol)
dat <- durban.rowcol
libs(desplot)
desplot(dat, yield~bed*row,
out1=rep, num=gen, # aspect unknown
main="durban.rowcol")
# Durban 2003 Figure 1
m10 <- lm(yield~gen, data=dat)
dat$resid <- m10$resid
## libs(lattice)
## xyplot(resid~row, dat, type=c('p','smooth'), main="durban.rowcol")
## xyplot(resid~bed, dat, type=c('p','smooth'), main="durban.rowcol")
# Figure 3
libs(lattice)
xyplot(resid ~ bed|factor(row), data=dat,
main="durban.rowcol",
type=c('p','smooth'))
# Figure 5 - field trend
# note, Durban used gam package like this
# m1lo <- gam(yield ~ gen + lo(row, span=10/16) + lo(bed, span=9/34), data=dat)
libs(mgcv)
m1lo <- gam(yield ~ gen + s(row) + s(bed, k=5), data=dat)
new1 <- expand.grid(row=unique(dat$row),bed=unique(dat$bed))
new1 <- cbind(new1, gen="G001")
p1lo <- predict(m1lo, newdata=new1)
libs(lattice)
wireframe(p1lo~row+bed, new1, aspect=c(1,.5), main="Field trend")
if(require("asreml", quietly=TRUE)) {
libs(asreml)
dat <- transform(dat, rowf=factor(row), bedf=factor(bed))
dat <- dat[order(dat$rowf, dat$bedf),]
m1a1 <- asreml(yield~gen + lin(rowf) + lin(bedf), data=dat,
random=~spl(rowf) + spl(bedf) + units,
family=asr_gaussian(dispersion=1))
m1a2 <- asreml(yield~gen + lin(rowf) + lin(bedf), data=dat,
random=~spl(rowf) + spl(bedf) + units,
resid = ~ar1(rowf):ar1(bedf))
m1a2 <- update(m1a2)
m1a3 <- asreml(yield~gen, data=dat, random=~units,
resid = ~ar1(rowf):ar1(bedf))
# Figure 7
libs(lattice)
v7a <- asr_varioGram(x=dat$bedf, y=dat$rowf, z=m1a3$residuals)
wireframe(gamma ~ x*y, v7a, aspect=c(1,.5)) # Fig 7a
v7b <- asr_varioGram(x=dat$bedf, y=dat$rowf, z=m1a2$residuals)
wireframe(gamma ~ x*y, v7b, aspect=c(1,.5)) # Fig 7b
v7c <- asr_varioGram(x=dat$bedf, y=dat$rowf, z=m1lo$residuals)
wireframe(gamma ~ x*y, v7c, aspect=c(1,.5)) # Fig 7c
}
} # }