Split-split-plot experiment of rice
gomez.splitsplit.Rd
Grain yield of three varieties of rice grown in a split-split plot arrangement with 3 reps, nitrogen level as the main plot, management practice as the sub-plot, and rice variety as the sub-sub plot.
Format
A data frame with 135 observations on the following 7 variables.
rep
block, 3 levels
nitro
nitrogen fertilizer, in kilograms/hectare
management
plot management
gen
genotype/variety of rice
yield
yield
col
column position in the field
row
row position in the field
Used with permission of Kwanchai Gomez.
Source
Gomez, K.A. and Gomez, A.A.. 1984, Statistical Procedures for Agricultural Research. Wiley-Interscience. Page 143.
References
H. P. Piepho, R. N. Edmondson. (2018). A tutorial on the statistical analysis of factorial experiments with qualitative and quantitative treatment factor levels. Jour Agronomy and Crop Science, 8, 1-27. https://doi.org/10.1111/jac.12267
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(gomez.splitsplit)
dat <- gomez.splitsplit
dat$nf <- factor(dat$nitro)
libs(desplot)
desplot(dat, nf ~ col*row,
# aspect unknown
out1=rep, col=management, num=gen, cex=1,
main="gomez.splitsplit")
desplot(dat, yield ~ col*row,
# aspect unknown
out1=rep, main="gomez.splitsplit")
libs(HH)
position(dat$nf) <- c(0,50,80,110,140)
interaction2wt(yield~rep+nf+management+gen, data=dat,
main="gomez.splitsplit",
x.between=0, y.between=0,
relation=list(x="free", y="same"),
rot=c(90,0), xlab="",
par.strip.text.input=list(cex=.7))
# AOV. Gomez page 144-153
m0 <- aov(yield~ nf * management * gen + Error(rep/nf/management),
data=dat)
summary(m0) # Similar to Gomez, p. 153.
} # }