Gross profit for 4 vegetable crops in 6 years
hazell.vegetables.Rd
Gross profit for 4 vegetable crops in 6 years
Usage
data("hazell.vegetables")
Format
A data frame with 6 observations on the following 5 variables.
year
year factor, 6 levels
carrot
Carrot profit, dollars/acre
celery
Celery profit, dollars/acre
cucumber
Cucumber profit, dollars/acre
pepper
Pepper profit, dollars/acre
Details
The values in the table are gross profits (loss) in dollars per acre. The criteria in the example below are (1) total acres < 200, (2) total labor < 10000, (3) crop rotation.
The example shows how to use linear programming to maximize expected profit.
Source
P.B.R. Hazell, (1971). A linear alternative to quadratic and semivariance programming for farm planning under uncertainty. Am. J. Agric. Econ., 53, 53-62. https://doi.org/10.2307/3180297
References
Carlos Romero, Tahir Rehman. (2003). Multiple Criteria Analysis for Agricultural Decisions. Elsevier.
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(hazell.vegetables)
dat <- hazell.vegetables
libs(lattice)
xyplot(carrot+celery+cucumber+pepper ~ year,dat,
ylab="yearly profit by crop",
type='b', auto.key=list(columns=4),
panel.hline=0)
# optimal strategy for planting crops (calculated below)
dat2 <- apply(dat[,-1], 1, function(x) x*c(0, 27.5, 100, 72.5))/1000
colnames(dat2) <- rownames(dat)
barplot(dat2, legend.text=c(" 0 carrot", "27.5 celery", " 100 cucumber", "72.5 pepper"),
xlim=c(0,7), ylim=c(-5,120),
col=c('orange','green','forestgreen','red'),
xlab="year", ylab="Gross profit, $1000",
main="hazell.vegetables - retrospective profit from optimal strategy",
args.legend=list(title="acres, crop"))
libs(linprog)
# colMeans(dat[ , -1])
# 252.8333 442.6667 283.8333 515.8333
# cvec = avg across-years profit per acre for each crop
cvec <- c(253, 443, 284, 516)
# Maximize c'x for Ax=b
A <- rbind(c(1,1,1,1), c(25,36,27,87), c(-1,1,-1,1))
colnames(A) <- names(cvec) <- c("carrot","celery","cucumber","pepper")
rownames(A) <- c('land','labor','rotation')
# bvec criteria = (1) total acres < 200, (2) total labor < 10000,
# (3) crop rotation.
bvec <- c(200,10000,0)
const.dir <- c("<=","<=","<=")
m1 <- solveLP(cvec, bvec, A, maximum=TRUE, const.dir=const.dir, lpSolve=TRUE)
# m1$solution # optimal number of acres for each crop
# carrot celery cucumber pepper
# 0.00000 27.45098 100.00000 72.54902
# Average income for this plan
## sum(cvec * m1$solution)
## [1] 77996.08
# Year-to-year income for this plan
## as.matrix(dat[,-1])
## [,1]
## [1,] 80492.16
## [2,] 80431.37
## [3,] 81884.31
## [4,] 106868.63
## [5,] 37558.82
## [6,] 80513.73
# optimum allocation that minimizes year-to-year income variability.
# brute-force search
# For generality, assume we have unequal probabilities for each year.
probs <- c(.15, .20, .20, .15, .15, .15)
# Randomly allocate crops to 200 acres, 100,000 times
#set.seed(1)
mat <- matrix(runif(4*100000), ncol=4)
mat <- 200*sweep(mat, 1, rowSums(mat), "/")
# each row is one strategy, showing profit for each of the six years
# profit <- mat
profit <- tcrossprod(mat, as.matrix(dat[,-1])) # Each row is profit, columns are years
# calculate weighted variance using year probabilities
wtvar <- apply(profit, 1, function(x) cov.wt(as.data.frame(x), wt=probs)$cov)
# five best planting allocations that minimizes the weighted variance
ix <- order(wtvar)[1:5]
mat[ix,]
## carrot celery cucumber pepper
## [,1] [,2] [,3] [,4]
## [1,] 71.26439 28.09259 85.04644 15.59657
## [2,] 72.04428 27.53299 84.29760 16.12512
## [3,] 72.16332 27.35147 84.16669 16.31853
## [4,] 72.14622 29.24590 84.12452 14.48335
## [5,] 68.95226 27.39246 88.61828 15.03700
} # }