Birth weight and weaning weight of Dorper x Red Maasi lambs
ilri.sheep.Rd
Birth weight and weaning weight of 882 lambs from a partial diallel cross of Dorper and Red Maasi breeds.
Format
A data frame with 882 observations on the following 12 variables.
year
year of lamb birth, 1991-1996
lamb
lamb id
sex
sex of lamb, M=Male/F=Female
gen
genotype, DD, DR, RD, RR
birthwt
weight of lamb at birth, kg
weanwt
weight of lamb at weaning, kg
weanage
age of lamb at weaning, days
ewe
ewe id
ewegen
ewe genotype: D, R
damage
ewe (dam) age in years
ram
ram id
ramgen
ram genotype: D, R
Details
Red Maasai sheep in East Africa are perceived to be resistant to certain parasites. ILRI decided in 1990 to investigate the degree of resistance exhibited by this Red Maasai breed and initiated a study in Kenya. A susceptible breed, the Dorper, was chosen to provide a direct comparison with the Red Maasai. The Dorper is well-adapted to this area and is also larger than the Red Maasai, and this makes these sheep attractive to farmers.
Throughout six years from 1991 to 1996 Dorper (D), Red Maasai (R) and Red Maasai x Dorper crossed ewes were mated to Red Maasai and Dorper rams to produce a number of different lamb genotypes. For the purposes of this example, only the following four offspring genotypes are considered (Sire x Dam): D x D, D x R, R x D and R x R.
Records are missing in 182 of the lambs, mostly because of earlier death.
Source
Mixed model analysis for the estimation of components of genetic variation in lamb weaning weight. International Livestock Research Institute. Permanent link: https://hdl.handle.net/10568/10364 https://biometrics.ilri.org/CS/case Retrieved Dec 2011.
Used via license: Creative Commons BY-NC-SA 3.0.
References
Baker, RL and Nagda, S. and Rodriguez-Zas, SL and Southey, BR and Audho, JO and Aduda, EO and Thorpe, W. (2003). Resistance and resilience to gastro-intestinal nematode parasites and relationships with productivity of Red Maasai, Dorper and Red Maasai x Dorper crossbred lambs in the sub-humid tropics. Animal Science, 76, 119-136. https://doi.org/10.1017/S1357729800053388
Gota Morota, Hao Cheng, Dianne Cook, Emi Tanaka (2021). ASAS-NANP SYMPOSIUM: prospects for interactive and dynamic graphics in the era of data-rich animal science. Journal of Animal Science, Volume 99, Issue 2, February 2021, skaa402. https://doi.org/10.1093/jas/skaa402
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(ilri.sheep)
dat <- ilri.sheep
dat <- transform(dat, lamb=factor(lamb), ewe=factor(ewe), ram=factor(ram),
year=factor(year))
# dl is linear covariate, same as damage, but truncated to [2,8]
dat <- within(dat, {
dl <- damage
dl <- ifelse(dl < 3, 2, dl)
dl <- ifelse(dl > 7, 8, dl)
dq <- dl^2
})
dat <- subset(dat, !is.na(weanage))
# EDA
libs(lattice)
## bwplot(weanwt ~ year, dat, main="ilri.sheep", xlab="year", ylab="Wean weight",
## panel=panel.violin) # Year effect
bwplot(weanwt ~ factor(dl), dat,
main="ilri.sheep", xlab="Dam age", ylab="Wean weight") # Dam age effect
# bwplot(weanwt ~ gen, dat,
# main="ilri.sheep", xlab="Genotype", ylab="Wean weight") # Genotype differences
xyplot(weanwt ~ weanage, dat, type=c('p','smooth'),
main="ilri.sheep", xlab="Wean age", ylab="Wean weight") # Age covariate
# case study page 4.18
lm1 <- lm(weanwt ~ year + sex + weanage + dl + dq + ewegen + ramgen, data=dat)
summary(lm1)
anova(lm1)
# ----------
libs(lme4)
lme1 <- lmer(weanwt ~ year + sex + weanage + dl + dq + ewegen + ramgen +
(1|ewe) + (1|ram), data=dat)
print(lme1, corr=FALSE)
lme2 <- lmer(weanwt ~ year + sex + weanage + dl + dq + ewegen + ramgen +
(1|ewe), data=dat)
lme3 <- lmer(weanwt ~ year + sex + weanage + dl + dq + ewegen + ramgen +
(1|ram), data=dat)
anova(lme1, lme2, lme3)
# ----------
if(require("asreml", quietly=TRUE)){
libs(asreml,lucid)
# case study page 4.20
m1 <- asreml(weanwt ~ year + sex + weanage + dl + dq + ramgen + ewegen,
data=dat)
# wald(m1)
# case study page 4.26
m2 <- asreml(weanwt ~ year + sex + weanage + dl + dq + ramgen + ewegen,
random = ~ ram + ewe, data=dat)
# wald(m2)
# case study page 4.37, year means
# predict(m2, data=dat, classify="year")
## year predicted.value standard.error est.status
## 1 91 12.638564 0.2363652 Estimable
## 2 92 11.067659 0.2285252 Estimable
## 3 93 11.561932 0.1809891 Estimable
## 4 94 9.636058 0.2505478 Estimable
## 5 95 9.350247 0.2346849 Estimable
## 6 96 10.188482 0.2755387 Estimable
}
} # }