Alpha lattice design of spring oats

Format

A data frame with 72 observations on the following 5 variables.

plot

plot number

rep

replicate

block

incomplete block

gen

genotype (variety)

yield

dry matter yield (tonnes/ha)

row

Row ordinate

col

Column ordinate

Details

A spring oats trial grown in Craibstone, near Aberdeen. There were 24 varieties in 3 replicates, each consisting of 6 incomplete blocks of 4 plots. Planted in a resolvable alpha design.

Caution: Note that the table on page 146 of John & Williams (1995) is NOT the physical layout. The plots were laid out in a single line.

Source

J. A. John & E. R. Williams (1995). Cyclic and computer generated designs. Chapman and Hall, London. Page 146.

References

Piepho, H.P. and Mohring, J. (2007), Computing heritability and selection response from unbalanced plant breeding trials. Genetics, 177, 1881-1888. https://doi.org/10.1534/genetics.107.074229

Paul Schmidt, Jens Hartung, Jörn Bennewitz, and Hans-Peter Piepho (2019). Heritability in Plant Breeding on a Genotype-Difference Basis. Genetics, 212, 991-1008. https://doi.org/10.1534/genetics.119.302134

Examples

# \dontrun{

  library(agridat)
  data(john.alpha)
  dat <- john.alpha
  
  # RCB (no incomplete block)
  m0 <- lm(yield ~ 0 + gen + rep, data=dat)

  # Block fixed (intra-block analysis) (bottom of table 7.4 in John)
  m1 <- lm(yield ~ 0 + gen + rep + rep:block, dat)
  anova(m1)
#> Analysis of Variance Table
#> 
#> Response: yield
#>           Df  Sum Sq Mean Sq  F value    Pr(>F)    
#> gen       24 1458.83  60.785 728.2829 < 2.2e-16 ***
#> rep        2    6.14   3.068  36.7557 6.593e-09 ***
#> rep:block 15    3.60   0.240   2.8784  0.006255 ** 
#> Residuals 31    2.59   0.083                       
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

  # Block random (combined inter-intra block analysis)
  libs(lme4, lucid)
  m2 <- lmer(yield ~ 0 + gen + rep + (1|rep:block), dat)

  anova(m2)
#> Analysis of Variance Table
#>     npar Sum Sq Mean Sq  F value
#> gen   24 380.44 15.8515 185.9959
#> rep    2   1.57  0.7851   9.2124
  ## Analysis of Variance Table
  ##     Df Sum Sq Mean Sq  F value
  ## gen 24 380.43 15.8513 185.9942
  ## rep  2   1.57  0.7851   9.2123
  vc(m2)
#>        grp        var1 var2    vcov  sdcor
#>  rep:block (Intercept) <NA> 0.06194 0.2489
#>   Residual        <NA> <NA> 0.08523 0.2919
  ##        grp        var1 var2    vcov  sdcor
  ##  rep:block (Intercept) <NA> 0.06194 0.2489
  ##   Residual        <NA> <NA> 0.08523 0.2919


  # Variety means.  John and Williams table 7.5.  Slight, constant
  # difference for each method as compared to John and Williams.
  means <- data.frame(rcb=coef(m0)[1:24],
                      ib=coef(m1)[1:24],
                      intra=fixef(m2)[1:24])
  head(means)
#>             rcb       ib    intra
#> genG01 5.201233 5.268742 5.146433
#> genG02 4.552933 4.665389 4.517265
#> genG03 3.381800 3.803790 3.537933
#> genG04 4.439400 4.728175 4.528828
#> genG05 5.103100 5.225708 5.075944
#> genG06 4.749067 4.618234 4.575395
  ##             rcb       ib    intra
  ## genG01 5.201233 5.268742 5.146433
  ## genG02 4.552933 4.665389 4.517265
  ## genG03 3.381800 3.803790 3.537934
  ## genG04 4.439400 4.728175 4.528828
  ## genG05 5.103100 5.225708 5.075944
  ## genG06 4.749067 4.618234 4.575394
  
  libs(lattice)
  splom(means, main="john.alpha - means for RCB, IB, Intra-block")

  

  # ----------
  # asreml4

  libs(asreml,lucid)

  # Heritability calculation of Piepho & Mohring, Example 1

  m3 <- asreml(yield ~ 1 + rep, data=dat, random=~ gen + rep:block)
#> Model fitted using the gamma parameterization.
#> ASReml 4.1.0 Fri Dec 17 15:17:39 2021
#>           LogLik        Sigma2     DF     wall    cpu
#>  1       7.34791      0.221592     69 15:17:39    0.0
#>  2      12.08376      0.156976     69 15:17:39    0.0
#>  3      15.53184      0.110746     69 15:17:39    0.0
#>  4      16.65758      0.089647     69 15:17:39    0.0
#>  5      16.80904      0.081946     69 15:17:39    0.0
#>  6      16.80985      0.081598     69 15:17:39    0.0
  sg2 <- summary(m3)$varcomp['gen','component'] # .142902
  
  # Average variance of a difference of two adjusted means (BLUP)
  
  p3 <- predict(m3, data=dat, classify="gen", sed=TRUE)
#> Model fitted using the gamma parameterization.
#> ASReml 4.1.0 Fri Dec 17 15:17:39 2021
#>           LogLik        Sigma2     DF     wall    cpu
#>  1       16.8098     0.0816175     69 15:17:39    0.0
#>  2       16.8098     0.0816174     69 15:17:39    0.0
#>  3       16.8098     0.0816172     69 15:17:39    0.0
  # Matrix of pair-wise SED values, squared
  vdiff <- p3$sed^2
  # Average variance of two DIFFERENT means (using lower triangular of vdiff)
  vblup <- mean(vdiff[lower.tri(vdiff)]) # .05455038
  
  # Note that without sed=TRUE, asreml reports square root of the average variance
  # of a difference between the variety means, so the following gives the same value
  # predict(m3, data=dat, classify="gen")$avsed ^ 2 # .05455038
  
  # Average variance of a difference of two adjusted means (BLUE)
  m4 <- asreml(yield ~ 1 + gen + rep, data=dat, random = ~ rep:block)
#> Model fitted using the gamma parameterization.
#> ASReml 4.1.0 Fri Dec 17 15:17:39 2021
#>           LogLik        Sigma2     DF     wall    cpu
#>  1       8.27642      0.119546     46 15:17:39    0.0
#>  2       8.94241      0.108572     46 15:17:39    0.0
#>  3       9.53543      0.096936     46 15:17:39    0.0
#>  4       9.80736      0.087555     46 15:17:39    0.0
#>  5       9.82176      0.085478     46 15:17:39    0.0
#>  6       9.82194      0.085243     46 15:17:39    0.0
  p4 <- predict(m4, data=dat, classify="gen", sed=TRUE)
#> Model fitted using the gamma parameterization.
#> ASReml 4.1.0 Fri Dec 17 15:17:39 2021
#>           LogLik        Sigma2     DF     wall    cpu
#>  1       9.82194     0.0852263     46 15:17:39    0.0
#>  2       9.82194     0.0852260     46 15:17:39    0.0
#>  3       9.82194     0.0852252     46 15:17:39    0.0
  vdiff <- p4$sed^2
  vblue <- mean(vdiff[lower.tri(vdiff)]) # .07010875
  # Again, could use predict(m4, data=dat, classify="gen")$avsed ^ 2
  
  # H^2 Ad-hoc measure of heritability
  sg2 / (sg2 + vblue/2) # .803
#> [1] 0.8029759
  
  # H^2c Similar measure proposed by Cullis.
  1-(vblup / (2*sg2)) # .809
#> [1] 0.8090841


  # ----------
  # lme4 to calculate Cullis H2
  # https://stackoverflow.com/questions/38697477
  
  libs(lme4)
  
  cov2sed <- function(x){
    # Convert var-cov matrix to SED matrix
    # sed[i,j] = sqrt( x[i,i] + x[j,j]- 2*x[i,j] )
    n <- nrow(x)
    vars <- diag(x)
    sed <- sqrt( matrix(vars, n, n, byrow=TRUE) +
                   matrix(vars, n, n, byrow=FALSE) - 2*x )
    diag(sed) <- 0
    return(sed)
  }
  
  # Same as asreml model m4. Note 'gen' must be first term
  m5blue <- lmer(yield ~ 0 + gen + rep + (1|rep:block), dat)
  
  libs(emmeans)
#> Warning: package 'emmeans' was built under R version 4.1.2
  ls5blue <- emmeans(m5blue, "gen")
  con <- ls5blue@linfct[,1:24] # contrast matrix for genotypes
  # The 'con' matrix is identity diagonal, so we don't need to multiply,
  # but do so for a generic approach
  # sed5blue <- cov2sed(con 
  tmp <- tcrossprod( crossprod(t(con), vcov(m5blue)[1:24,1:24]), con)
  sed5blue <- cov2sed(tmp)

  
  # vblue Average variance of difference between genotypes
  vblue <- mean(sed5blue[upper.tri(sed5blue)]^2)
  vblue # .07010875 matches 'vblue' from asreml
#> [1] 0.07010875
  
  # Now blups
  m5blup <- lmer(yield ~ 0 + (1|gen) + rep + (1|rep:block), dat)
  # Need lme4::ranef in case ordinal is loaded
  re5 <- lme4::ranef(m5blup,condVar=TRUE)
  vv1 <- attr(re5$gen,"postVar")  
  vblup <- 2*mean(vv1) # .0577 not exactly same as 'vblup' above
  vblup
#> [1] 0.0577334
  
  # H^2 Ad-hoc measure of heritability
  sg2 <- c(lme4::VarCorr(m5blup)[["gen"]])  # 0.142902
  sg2 / (sg2 + vblue/2) # .803 matches asreml
#> [1] 0.8030173

  # H^2c Similar measure proposed by Cullis.
  1-(vblup / 2 / sg2) # .809 from asreml, .800 from lme4
#> [1] 0.7979969

  
  # ----------
  # Sommer to calculate Cullis H2
  libs(sommer)
  m2.ran <- mmer(fixed  = yield ~ rep,
                 random =       ~ gen + rep:block,
                 data   = dat)
#> Version out of date. Please update sommer to the newest version using:
#> install.packages('sommer') in a new session
#>  Use the 'date.warning' argument to disable the warning message.iteration    LogLik     wall    cpu(sec)   restrained
#>     1      -19.4174   15:17:39      0           0
#>     2      -14.1597   15:17:39      0           0
#>     3      -12.6451   15:17:39      0           0
#>     4      -12.5508   15:17:39      0           0
#>     5      -12.5506   15:17:39      0           0
  
  vc_g     <- m2.ran$sigma$gen       # genetic variance component
  n_g      <- n_distinct(dat$gen)    # number of genotypes
  C22_g    <- m2.ran$PevU$gen$yield  # Prediction error variance matrix for genotypic BLUPs
  trC22_g  <- sum(diag(C22_g))       # trace
  # Mean variance of a difference between genotypic BLUPs. Smith eqn 26
  # I do not see the algebraic reason for this...2
  av2 <- 2/n_g * (trC22_g - (sum(C22_g)-trC22_g) / (n_g-1))                      
  
  ### H2 Cullis
  1-(av2 / (2 * vc_g)) #0.8091
#>           yield
#> yield 0.8091431

# }