Slate Hall Farm 1976 spring wheat
kempton.slatehall.Rd
Yields for a Slate Hall Farm 1976 spring wheat trial.
Format
A data frame with 150 observations on the following 5 variables.
rep
rep, 6 levels
row
row
col
column
gen
genotype, 25 levels
yield
yield (grams/plot)
Details
The trial was a balanced lattice with 25 varieties in 6 replicates, 10 ranges of 15 columns. The plot size was 1.5 meters by 4 meters. Each row within a rep is an (incomplete) block.
Field width: 15 columns * 1.5m = 22.5m
Field length: 10 ranges * 4m = 40m
Source
R A Kempton and P N Fox. (1997). Statistical Methods for Plant Variety Evaluation, Chapman and Hall. Page 84.
Julian Besag and David Higdon. 1993. Bayesian Inference for Agricultural Field Experiments. Bull. Int. Statist. Table 4.1.
References
Gilmour, Arthur R and Robin Thompson and Brian R Cullis. (1994). Average Information REML: An Efficient Algorithm for Variance Parameter Estimation in Linear Mixed Models, Biometrics, 51, 1440-1450.
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(kempton.slatehall)
dat <- kempton.slatehall
# Besag 1993 figure 4.1 (left panel)
libs(desplot)
grays <- colorRampPalette(c("#d9d9d9","#252525"))
desplot(dat, yield ~ col * row,
aspect=40/22.5, # true aspect
num=gen, out1=rep, col.regions=grays, # unknown aspect
main="kempton.slatehall - spring wheat yields")
# ----------
# Incomplete block model of Gilmour et al 1995
libs(lme4, lucid)
dat <- transform(dat, xf=factor(col), yf=factor(row))
m1 <- lmer(yield ~ gen + (1|rep) + (1|rep:yf) + (1|rep:xf), data=dat)
vc(m1)
## groups name variance stddev
## rep:xf (Intercept) 14810 121.7
## rep:yf (Intercept) 15600 124.9
## rep (Intercept) 4262 65.29
## Residual 8062 89.79
# ----------
if(require("asreml", quietly=TRUE)){
libs(asreml,lucid)
# Incomplete block model of Gilmour et al 1995
dat <- transform(dat, xf=factor(col), yf=factor(row))
m2 <- asreml(yield ~ gen, random = ~ rep/(xf+yf), data=dat)
lucid::vc(m2)
## effect component std.error z.ratio constr
## rep!rep.var 4262 6890 0.62 pos
## rep:xf!rep.var 14810 4865 3 pos
## rep:yf!rep.var 15600 5091 3.1 pos
## R!variance 8062 1340 6 pos
# Table 4
# asreml4
# predict(m2, data=dat, classify="gen")$pvals
}
} # }