Skip to contents

Height of Eucalyptus trees in southern Brazil

Format

A data frame with 490 observations on the following 4 variables.

gen

genotype (progeny) factor

origin

origin of progeny

loc

location

height

height, meters

Details

The genotypes originated from three different locations in Queensland, Australia, and were tested in southern Brazil. The experiment was conducted as a randomized complete block design with 6 plants per plot and 10 blocks. Mean tree height is reported.

The testing locations are described in the following table:

LocCityLat (S)Long (W)AltitudeAvg min tempAvg max tempAvg temp (C)Precip (mm)
L1Barra Ribeiro, RS30.3351.2330925191400
L2Telemaco Borba, PR24.2520.488501126191480
L3Boa Experanca de Sul, SP21.9548.535401523211300
L4Guanhaes, MG18.66439001424191600
L5Ipatinga, MG19.2542.332501524221250
L6Aracruz, ES19.840.28501526241360
L7Cacapva, SP23.0545.766501424201260

Arciniegas-Alarcon (2010) used the 'Ravenshoe' subset of the data to illustrate imputation of missing values.

Source

O J Lavoranti (2003). Estabilidade e adaptabilidade fenotipica atraves da reamostragem bootstrap no modelo AMMI, PhD thesis, University of Sao Paulo, Brazil.

References

Arciniegas-Alarcon, S. and Garcia-Pena, M. and dos Santos Dias, C.T. and Krzanowski, W.J. (2010). An alternative methodology for imputing missing data in trials with genotype-by-environment interaction, Biometrical Letters, 47, 1-14. https://doi.org/10.2478/bile-2014-0006

Examples

if (FALSE) { # \dontrun{

# Arciniegas-Alarcon et al use SVD and regression to estimate missing values.
# Partition the matrix X as a missing value xm, row vector xr1, column
# vector xc1, and submatrix X11
# X = [ xm  xr1 ]
#     [ xc1 X11 ] and let X11 = UDV'.
# Estimate the missing value xm = xr1 V D^{-1} U' xc1

data(lavoranti.eucalyptus)
dat <- lavoranti.eucalyptus

libs(lattice)
levelplot(height~loc*gen, dat, main="lavoranti.eucalyptus - GxE heatmap")

dat <- droplevels(subset(dat, origin=="Ravenshoe"))
libs(reshape2)
dat <- acast(dat, gen~loc, value.var='height')

dat[1,1] <- NA
x11 <- dat[-1,][,-1]
X11.svd <- svd(x11)
xc1 <- dat[-1,][,1]
xr1 <- dat[,-1][1,]
xm <- xr1 
xm # = 18.29, Original value was 17.4

} # }