Height of Eucalyptus trees in southern Brazil
lavoranti.eucalyptus.Rd
Height of Eucalyptus trees in southern Brazil
Format
A data frame with 490 observations on the following 4 variables.
gen
genotype (progeny) factor
origin
origin of progeny
loc
location
height
height, meters
Details
The genotypes originated from three different locations in Queensland, Australia, and were tested in southern Brazil. The experiment was conducted as a randomized complete block design with 6 plants per plot and 10 blocks. Mean tree height is reported.
The testing locations are described in the following table:
Loc | City | Lat (S) | Long (W) | Altitude | Avg min temp | Avg max temp | Avg temp (C) | Precip (mm) |
L1 | Barra Ribeiro, RS | 30.33 | 51.23 | 30 | 9 | 25 | 19 | 1400 |
L2 | Telemaco Borba, PR | 24.25 | 20.48 | 850 | 11 | 26 | 19 | 1480 |
L3 | Boa Experanca de Sul, SP | 21.95 | 48.53 | 540 | 15 | 23 | 21 | 1300 |
L4 | Guanhaes, MG | 18.66 | 43 | 900 | 14 | 24 | 19 | 1600 |
L5 | Ipatinga, MG | 19.25 | 42.33 | 250 | 15 | 24 | 22 | 1250 |
L6 | Aracruz, ES | 19.8 | 40.28 | 50 | 15 | 26 | 24 | 1360 |
L7 | Cacapva, SP | 23.05 | 45.76 | 650 | 14 | 24 | 20 | 1260 |
Arciniegas-Alarcon (2010) used the 'Ravenshoe' subset of the data to illustrate imputation of missing values.
Source
O J Lavoranti (2003). Estabilidade e adaptabilidade fenotipica atraves da reamostragem bootstrap no modelo AMMI, PhD thesis, University of Sao Paulo, Brazil.
References
Arciniegas-Alarcon, S. and Garcia-Pena, M. and dos Santos Dias, C.T. and Krzanowski, W.J. (2010). An alternative methodology for imputing missing data in trials with genotype-by-environment interaction, Biometrical Letters, 47, 1-14. https://doi.org/10.2478/bile-2014-0006
Examples
if (FALSE) { # \dontrun{
# Arciniegas-Alarcon et al use SVD and regression to estimate missing values.
# Partition the matrix X as a missing value xm, row vector xr1, column
# vector xc1, and submatrix X11
# X = [ xm xr1 ]
# [ xc1 X11 ] and let X11 = UDV'.
# Estimate the missing value xm = xr1 V D^{-1} U' xc1
data(lavoranti.eucalyptus)
dat <- lavoranti.eucalyptus
libs(lattice)
levelplot(height~loc*gen, dat, main="lavoranti.eucalyptus - GxE heatmap")
dat <- droplevels(subset(dat, origin=="Ravenshoe"))
libs(reshape2)
dat <- acast(dat, gen~loc, value.var='height')
dat[1,1] <- NA
x11 <- dat[-1,][,-1]
X11.svd <- svd(x11)
xc1 <- dat[-1,][,1]
xr1 <- dat[,-1][1,]
xm <- xr1
xm # = 18.29, Original value was 17.4
} # }