RCB experiment of turnips
mcconway.turnip.Rd
RCB experiment of turnips, 2 treatments for planting date and density
Format
A data frame with 64 observations on the following 6 variables.
gen
genotype
date
planting date, levels
21Aug1990
28Aug1990
density
planting density, 1, 2, 4, 8 kg/ha
block
block, 4 levels
yield
yield
Details
This is a randomized block experiment with 16 treatments allocated at random to each of four blocks. The 16 treatments were combinations of two varieties, two planting dates, and four densities.
Lee et al (2008) proposed an analysis using mixed models with changing treatment variances.
Piepho (2009) proposed an ordinary ANOVA using transformed data.
Used with permission of Kevin McConway.
References
Michael Berthold, D. J. Hand. Intelligent data analysis: an introduction, 1998. Pages 75–82.
Lee, C.J. and O Donnell, M. and O Neill, M. (2008). Statistical analysis of field trials with changing treatment variance. Agronomy Journal, 100, 484–489.
Piepho, H.P. (2009), Data transformation in statistical analysis of field trials with changing treatment variance. Agronomy Journal, 101, 865–869. https://doi.org/10.2134/agronj2008.0226x
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(mcconway.turnip)
dat <- mcconway.turnip
dat$densf <- factor(dat$density)
# Table 2 of Lee et al.
m0 <- aov( yield ~ gen * densf * date + block, dat )
summary(m0)
## Df Sum Sq Mean Sq F value Pr(>F)
## gen 1 84.0 83.95 8.753 0.00491 **
## densf 3 470.4 156.79 16.347 2.51e-07 ***
## date 1 233.7 233.71 24.367 1.14e-05 ***
## block 3 163.7 54.58 5.690 0.00216 **
## gen:densf 3 8.6 2.88 0.301 0.82485
## gen:date 1 36.5 36.45 3.800 0.05749 .
## densf:date 3 154.8 51.60 5.380 0.00299 **
## gen:densf:date 3 18.0 6.00 0.626 0.60224
## Residuals 45 431.6 9.59
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Boxplots suggest heteroskedasticity for date, density
libs("HH")
interaction2wt(yield ~ gen + date + densf +block, dat,
x.between=0, y.between=0,
main="mcconway.turnip - yield")
libs(nlme)
# Random block model
m1 <- lme(yield ~ gen * date * densf, random= ~1|block, data=dat)
summary(m1)
anova(m1)
# Multiplicative variance model over densities and dates
m2 <- update(m1,
weights=varComb(varIdent(form=~1|densf),
varIdent(form=~1|date)))
summary(m2)
anova(m2)
# Unstructured variance model over densities and dates
m3 <- update(m1, weights=varIdent(form=~1|densf*date))
summary(m3)
anova(m3)
# Table 3 of Piepho, using transformation
m4 <- aov( yield^.235 ~ gen * date * densf + block, dat )
summary(m4)
} # }