Biomass of 3 crops in Greece
miguez.biomass.Rd
Biomass of 3 crops in Greece
Usage
data("miguez.biomass")
Format
A data frame with 212 observations on the following 5 variables.
doy
day of year
block
block, 1-4
input
management input, Lo/Hi
crop
crop type
yield
yield tons/ha
Details
Experiment was conducted in Greece in 2009. Yield values are destructive Measurements of above-ground biomass for fiber sorghum, maize, sweet sorghum.
Hi management refers to weekly irrigation and high nitrogen applications. Lo management refers to bi-weekly irrigation and low nitrogen.
The experiment had 4 blocks.
Crops were planted on DOY 141 with 0 yield.
References
Sotirios V. Archontoulis and Fernando E. Miguez (2013). Nonlinear Regression Models and Applications in Agricultural Research. Agron. Journal, 105:1-13. https://doi.org/10.2134/agronj2012.0506
Hamze Dokoohaki. https://www.rpubs.com/Para2x/100378 https://rstudio-pubs-static.s3.amazonaws.com/100440_26eb9108524c4cc99071b0db8e648e7d.html
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(miguez.biomass)
dat <- miguez.biomass
dat <- subset(dat, doy > 141)
libs(lattice)
xyplot(yield ~ doy | crop*input, data = dat,
main="miguez.biomass",
groups = crop,
type=c('p','smooth'),
auto.key=TRUE)
# ----------
# Archontoulis et al fit some nonlinear models.
# Here is a simple example which does NOT account for crop/input
# Slow, so dont run
if(0){
dat2 <- transform(dat, eu = paste(block, input, crop))
dat2 <- groupedData(yield ~ doy | eu, data = dat2)
fit.lis <- nlsList(yield ~ SSfpl(doy, A, B, xmid, scal),
data = dat2,
control=nls.control(maxiter=100))
print(plot(intervals(fit.lis)))
libs(nlme)
# use all data to get initial values
inits <- getInitial(yield ~ SSfpl(doy, A, B, xmid, scal), data = dat2)
inits
xvals <- 150:325
y1 <- with(as.list(inits), SSfpl(xvals, A, B, xmid, scal))
plot(yield ~ doy, dat2)
lines(xvals,y1)
# must have groupedData object to use augPred
dat2 <- groupedData(yield ~ doy|eu, data=dat2)
plot(dat2)
# without 'random', all effects are included in 'random'
m1 <- nlme(yield ~ SSfpl(doy, A, B, xmid,scale),
data= dat2,
fixed= A + B + xmid + scale ~ 1,
# random = B ~ 1|eu, # to make only B random
random = A + B + xmid + scale ~ 1|eu,
start=inits)
fixef(m1)
summary(m1)
plot(augPred(m1, level=0:1),
main="miguez.biomass - observed/predicted data") # only works with groupedData object
}
} # }