
Multi-environment trial of rice, with solar radiation and temperature
senshu.rice.RdResponse of rice to solar radiation and temperature
Format
A data frame with 40 observations on the following 7 variables.
countrycountry
loclocation
yearyear of planting, last two digits
monthmonth of planting
radsolar radiation
mintminimum temperature
yieldyield t/ha
Details
Minimum temperature is the average across 30 days post flowering.
Opinion: Fitting a quadratic model to this data makes no sense.
Source
Seshu, D. V. and Cady, F. B. 1984. Response of rice to solar radiation and temperature estimated from international yield trials. Crop Science, 24, 649-654. https://doi.org/10.2135/cropsci1984.0011183X002400040006x
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(senshu.rice)
dat <- senshu.rice
# Model 1 of Senshu & Cady
m1 <- lm(yield ~ 1 + rad + mint + I(mint^2), dat)
coef(m1)
# Use Fieller to calculate conf int around optimum minimum temp
# See: Piegorsch & Bailer, p. 31.
# Calculation derived from vegan:::fieller.MOStest
m2 <- lm(yield ~ 1 + mint + I(mint^2), dat)
b1 <- coef(m2)[2]
b2 <- coef(m2)[3]
vc <- vcov(m2)
sig11 <- vc[2,2]
sig12 <- vc[2,3]
sig22 <- vc[3,3]
u <- -b1/2/b2
tval <- qt(1-.05/2, nrow(dat)-3)
gam <- tval^2 * sig22 / b2^2
x <- u + gam * sig12 / (2 * sig22)
f <- tval / (-2*b2)
sq <- sqrt(sig11 + 4*u*sig12 + 4*u^2*sig22 - gam * (sig11 - sig12^2 / sig22) )
ci <- (x + c(1,-1)*f*sq) / (1-gam)
plot(yield ~ mint, dat, xlim=c(17, 32),
main="senshu.rice: Quadratic fit and Fieller confidence interval",
xlab="Minimum temperature", ylab="Yield")
lines(17:32, predict(m2, new=data.frame(mint=17:32)))
abline(v=ci, col="blue")
} # }