Multi-environment trial of rice, with solar radiation and temperature
senshu.rice.Rd
Response of rice to solar radiation and temperature
Format
A data frame with 40 observations on the following 7 variables.
country
country
loc
location
year
year of planting, last two digits
month
month of planting
rad
solar radiation
mint
minimum temperature
yield
yield t/ha
Details
Minimum temperature is the average across 30 days post flowering.
Opinion: Fitting a quadratic model to this data makes no sense.
Source
Seshu, D. V. and Cady, F. B. 1984. Response of rice to solar radiation and temperature estimated from international yield trials. Crop Science, 24, 649-654. https://doi.org/10.2135/cropsci1984.0011183X002400040006x
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(senshu.rice)
dat <- senshu.rice
# Model 1 of Senshu & Cady
m1 <- lm(yield ~ 1 + rad + mint + I(mint^2), dat)
coef(m1)
# Use Fieller to calculate conf int around optimum minimum temp
# See: Piegorsch & Bailer, p. 31.
# Calculation derived from vegan:::fieller.MOStest
m2 <- lm(yield ~ 1 + mint + I(mint^2), dat)
b1 <- coef(m2)[2]
b2 <- coef(m2)[3]
vc <- vcov(m2)
sig11 <- vc[2,2]
sig12 <- vc[2,3]
sig22 <- vc[3,3]
u <- -b1/2/b2
tval <- qt(1-.05/2, nrow(dat)-3)
gam <- tval^2 * sig22 / b2^2
x <- u + gam * sig12 / (2 * sig22)
f <- tval / (-2*b2)
sq <- sqrt(sig11 + 4*u*sig12 + 4*u^2*sig22 - gam * (sig11 - sig12^2 / sig22) )
ci <- (x + c(1,-1)*f*sq) / (1-gam)
plot(yield ~ mint, dat, xlim=c(17, 32),
main="senshu.rice: Quadratic fit and Fieller confidence interval",
xlab="Minimum temperature", ylab="Yield")
lines(17:32, predict(m2, new=data.frame(mint=17:32)))
abline(v=ci, col="blue")
} # }