Asparagus yields for different cutting treatments
snedecor.asparagus.Rd
Asparagus yields for different cutting treatments, in 4 years.
Format
A data frame with 64 observations on the following 4 variables.
block
block factor, 4 levels
year
year, numeric
trt
treatment factor of final cutting date
yield
yield, ounces
Details
Planted in 1927. Cutting began in 1929. Yield is the weight of asparagus cuttings up to Jun 1 in each plot. Some plots received continued cuttings until Jun 15, Jul 1, and Jul 15.
In the past, repeated-measurement experiments like this were sometimes analyzed as if they were a split-plot experiment. This violates some indpendence assumptions.
References
Mick O'Neill, 2010. A Guide To Linear Mixed Models In An Experimental Design Context. Statistical Advisory & Training Service Pty Ltd.
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(snedecor.asparagus)
dat <- snedecor.asparagus
dat <- transform(dat, year=factor(year))
dat$trt <- factor(dat$trt,
levels=c("Jun-01", "Jun-15", "Jul-01", "Jul-15"))
# Continued cutting reduces plant vigor and yield
libs(lattice)
dotplot(yield ~ trt|year, data=dat,
xlab="Cutting treatment", main="snedecor.asparagus")
# Split-plot
if(0){
libs(lme4)
m1 <- lmer(yield ~ trt + year + trt:year +
(1|block) + (1|block:trt), data=dat)
}
# ----------
if(require("asreml", quietly=TRUE)){
libs(asreml,lucid)
# Split-plot with asreml
m2 <- asreml(yield ~ trt + year + trt:year, data=dat,
random = ~ block + block:trt)
lucid::vc(m2)
## effect component std.error z.ratio bound
## block 354.3 405 0.87 P 0.1
## block:trt 462.8 256.9 1.8 P 0
## units!R 404.7 82.6 4.9 P 0
## # Antedependence with asreml. See O'Neill (2010).
dat <- dat[order(dat$block, dat$trt), ]
m3 <- asreml(yield ~ year * trt, data=dat,
random = ~ block,
residual = ~ block:trt:ante(year,1),
max=50)
m3 <- update(m3)
m3 <- update(m3)
## # Extract the covariance matrix for years and convert to correlation
## covmat <- diag(4)
## covmat[upper.tri(covmat,diag=TRUE)] <- m3$R.param$`block:trt:year`$year$initial
## covmat[lower.tri(covmat)] <- t(covmat)[lower.tri(covmat)]
## round(cov2cor(covmat),2) # correlation among the 4 years
## # [,1] [,2] [,3] [,4]
## # [1,] 1.00 0.45 0.39 0.31
## # [2,] 0.45 1.00 0.86 0.69
## # [3,] 0.39 0.86 1.00 0.80
## # [4,] 0.31 0.69 0.80 1.00
## # We can also build the covariance Sigma by hand from the estimated
## # variance components via: Sigma^-1 = U D^-1 U'
## vv <- vc(m3)
## print(vv)
## ## effect component std.error z.ratio constr
## ## block!block.var 86.56 156.9 0.55 pos
## ## R!variance 1 NA NA fix
## ## R!year.1930:1930 0.00233 0.00106 2.2 uncon
## ## R!year.1931:1930 -0.7169 0.4528 -1.6 uncon
## ## R!year.1931:1931 0.00116 0.00048 2.4 uncon
## ## R!year.1932:1931 -1.139 0.1962 -5.8 uncon
## ## R!year.1932:1932 0.00208 0.00085 2.4 uncon
## ## R!year.1933:1932 -0.6782 0.1555 -4.4 uncon
## ## R!year.1933:1933 0.00201 0.00083 2.4 uncon
## U <- diag(4)
## U[1,2] <- vv[4,2] ; U[2,3] <- vv[6,2] ; U[3,4] <- vv[8,2]
## Dinv <- diag(c(vv[3,2], vv[5,2], vv[7,2], vv[9,2]))
## # solve(U
## solve(crossprod(t(U), tcrossprod(Dinv, U)) )
## ## [,1] [,2] [,3] [,4]
## ## [1,] 428.4310 307.1478 349.8152 237.2453
## ## [2,] 307.1478 1083.9717 1234.5516 837.2751
## ## [3,] 349.8152 1234.5516 1886.5150 1279.4378
## ## [4,] 237.2453 837.2751 1279.4378 1364.8446
}
} # }