Multi-environment trial of millet
tesfaye.millet.Rd
Multi-environment trial of millet
Usage
data("tesfaye.millet")
Format
A data frame with 415 observations on the following 9 variables.
year
year
site
site (location)
rep
replicate
col
column ordinate
row
row ordinate
plot
plot number
gen
genotype
entry_number
entry
yield
yield, kg/ha
Details
Experiments conducted at Bako and Assosa research centers in Ethiopia. The data has: 4 years, 2 sites = 7 environments, 2-3 reps per trial, 47 genotypes.
Tesfaye et al used asreml to fit a GxE model with Factor Analytic covariance structure for the GxE part and AR1xAR1 for spatial residuals at each site.
Data in PloS ONE was published under Creative Commons Attribution License.
Source
Tesfaye K, Alemu T, Argaw T, de Villiers S, Assefa E (2023) Evaluation of finger millet (Eleusine coracana (L.) Gaertn.) in multi-environment trials using enhanced statistical models. PLoS ONE 18(2): e0277499. https://doi.org/10.1371/journal.pone.0277499
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(tesfaye.millet)
dat <- tesfaye.millet
dat <- transform(dat, year=factor(year), site=factor(site))
libs(dplyr,asreml,lucid)
dat <- mutate(dat,
env=factor(paste0(site,year)),
gen=factor(gen),
rep=factor(rep),
xfac=factor(col), yfac=factor(row))
libs(desplot)
desplot(dat, yield~col*row|env, main="tesfaye.millet")
dat <- arrange(dat, env, xfac, yfac)
# Fixed environment
# Random row/col within environment, Factor Analytic GxE
# AR1xAR1 spatial residuals within each environment
if(require("asreml", quietly=TRUE)){
libs(asreml)
m1 <- asreml(yield ~ 1 + env,
data=dat,
random = ~ at(env):xfac + at(env):yfac + gen:fa(env),
residual = ~ dsum( ~ ar1(xfac):ar1(yfac)|env) )
m1 <- update(m1)
lucid::vc(m1)
}
} # }