Skip to contents

Iowa farmland values by county in 1925

Usage

data("wallace.iowaland")

Format

A data frame with 99 observations on the following 10 variables.

county

county factor, 99 levels

fips

FIPS code (state+county)

lat

latitude

long

longitude

yield

average corn yield per acre (bu)

corn

percent of land in corn

grain

percent of land in small grains

untillable

percent of land untillable

fedval

land value (excluding buildings) per acre, 1925 federal census

stval

land value (excluding buildings) per acre, 1925 state census

Details

None.

Source

H.A. Wallace (1926). Comparative Farm-Land Values in Iowa. The Journal of Land & Public Utility Economics, 2, 385-392. Page 387-388. https://doi.org/10.2307/3138610

References

Larry Winner. Spatial Data Analysis. https://www.stat.ufl.edu/~winner/data/iowaland.txt

Examples


library(agridat)
data(wallace.iowaland)
dat <- wallace.iowaland

# Interesting trends involving latitude
libs(lattice)
splom(~dat[,-c(1:2)], type=c('p','smooth'), lwd=2, main="wallace.iowaland")


# Means. Similar to Wallace table 1
apply(dat[, c('yield','corn','grain','untillable','fedval')], 2, mean)
#>      yield       corn      grain untillable     fedval 
#>   39.11111   32.47475   21.55556   18.84848  118.67677 

# Correlations.  Similar to Wallace table 2
round(cor(dat[, c('yield','corn','grain','untillable','fedval')]),2)
#>            yield  corn grain untillable fedval
#> yield       1.00  0.30  0.27      -0.16   0.61
#> corn        0.30  1.00  0.61      -0.82   0.81
#> grain       0.27  0.61  1.00      -0.59   0.62
#> untillable -0.16 -0.82 -0.59       1.00  -0.69
#> fedval      0.61  0.81  0.62      -0.69   1.00

m1 <- lm(fedval ~ yield + corn + grain + untillable, dat)
summary(m1) # estimates similar to Wallace, top of p. 389
#> 
#> Call:
#> lm(formula = fedval ~ yield + corn + grain + untillable, data = dat)
#> 
#> Residuals:
#>     Min      1Q  Median      3Q     Max 
#> -36.392  -7.797  -0.110   6.068  31.778 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -64.7071    17.3420  -3.731 0.000326 ***
#> yield         3.1488     0.3717   8.472 3.24e-13 ***
#> corn          1.8175     0.3090   5.881 6.20e-08 ***
#> grain         0.5394     0.2566   2.102 0.038229 *  
#> untillable   -0.5527     0.2697  -2.049 0.043270 *  
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 11.61 on 94 degrees of freedom
#> Multiple R-squared:  0.819,	Adjusted R-squared:  0.8113 
#> F-statistic: 106.3 on 4 and 94 DF,  p-value: < 2.2e-16
#> 

# Choropleth map
libs(maps)
data(county.fips)
dat <- transform(dat, polnm = paste0('iowa,',county)) # polnm example: iowa,adair

libs("latticeExtra") # for mapplot
redblue <- colorRampPalette(c("firebrick", "lightgray", "#375997"))
mapplot(polnm~fedval , data=dat, colramp=redblue,
        main="wallace.iowaland - Federal land values",
        xlab="Land value, dollars per acre",
        scales=list(draw=FALSE),
        map=map('county', 'iowa', plot=FALSE,
          fill=TRUE, projection="mercator"))
#> Warning: 6 unmatched regions: iowa,blackhawk, iowa,buenavista, iowa,cerrogordo, iowa,d....