Split-plot experiment of oats
yates.oats.Rd
The yield of oats from a split-plot field trial conducted at Rothamsted in 1931.
Varieties were applied to the main plots.
Manurial (nitrogen) treatments were applied to the sub-plots.
Each plot is 1/80 acre = 28.4 links * 44 links.
Field width: 4 plots * 44 links = 176 links.
Field length: 18 rows * 28.4 links = 511 links
The 'block' numbers in this data are as given in the Rothamsted Report. The 'grain' and 'straw' values are the actual pounds per sub-plot as shown in the Rothamsted Report. Each sub-plot is 1/80 acre, and a 'hundredweight (cwt)' is 112 pounds, so converting from sub-plot weight to hundredweight/acre needs a conversion factor of 80/112.
The 'yield' values are the values as they appeared in the paper by Yates, who used 1/4-pounds as the units (i.e. he multiplied the original weight by 4) for simpler calculations.
Format
row
row
col
column
yield
yield in 1/4 pounds per sub-plot, each 1/80 acre
nitro
nitrogen treatment in hundredweight per acre
gen
genotype, 3 levels
block
block, 6 levels
grain
grain weight in pounds per sub-plot
straw
straw weight in pounds per sub-plot
Source
Report for 1931. Rothamsted Experiment Station. Page 143. https://www.era.rothamsted.ac.uk/eradoc/article/ResReport1931-141-159
References
Yates, Frank (1935) Complex experiments, Journal of the Royal Statistical Society Supplement 2, 181-247. Figure 2. https://doi.org/10.2307/2983638
Examples
if (FALSE) { # \dontrun{
library(agridat)
data(yates.oats)
dat <- yates.oats
## # Means match Rothamsted report p. 144
## libs(dplyr)
## dat
## summarize(grain=mean(grain)*80/112,
## straw=mean(straw)*80/112)
libs(desplot)
# Experiment design & yield heatmap
desplot(dat, block ~ col*row, col.regions=c("black","yellow"),
out1=block, num=nitro, col=gen,
cex=1, aspect=511/176, # true aspect
main="yates.oats")
# Roughly linear gradient across the field. The right-half of each
# block has lower yield. The blocking is inadequate!
libs("lattice")
xyplot(yield ~ col|factor(nitro), dat,
type = c('p', 'r'), xlab='col', as.table = TRUE,
main="yates.oats")
libs(lme4)
# Typical split-plot analysis. Non-significant gen differences
m3 <- lmer(yield ~ factor(nitro) * gen + (1|block/gen), data=dat)
# Residuals still show structure
xyplot(resid(m3) ~ dat$col, xlab='col', type=c('p','smooth'),
main="yates.oats")
# Add a linear trend for column
m4 <- lmer(yield ~ col + factor(nitro) * gen + (1|block/gen), data=dat)
# xyplot(resid(m4) ~ dat$col, type=c('p','smooth'), xlab='col')
## Compare fits
AIC(m3,m4)
## df AIC
## m3 9 581.2372
## m4 10 557.9424 # Substantially better
# ----------
# Marginal predictions
# --- nlme ---
libs(nlme)
libs(emmeans)
# create unbalance
dat2 <- yates.oats[-c(1,2,3,5,8,13,21,34,55),]
m5l <- lme(yield ~ factor(nitro) + gen, random = ~1 | block/gen,
data = dat2)
# asreml r 4 has a bug with asreml( factor(nitro))
dat2$nitrof <- factor(dat2$nitro)
# --- asreml ---
if(require("asreml", quietly=TRUE)){
libs(asreml,lucid)
m5a <- asreml(yield ~ nitrof + gen,
random = ~ block + block:gen, data=dat2)
lucid::vc(m5l)
lucid::vc(m5a)
emmeans::emmeans(m5l, "gen")
predict(m5a, data=dat2, classify="gen")$pvals
}
} # }