Skip to contents

Effectiveness of 3 antibiotics against 16 bacterial species.

Format

A data frame with 16 observations on the following 5 variables.

bacteria

bacterial species, 16 levels

penicillin

MIC for penicillin

streptomycin

MIC for streptomycin

neomycin

MIC for neomycin

gramstain

Gram staining (positive or negative)

Source

Will Burtin (1951). Scope. Fall, 1951.

Details

The values reported are the minimum inhibitory concentration (MIC) in micrograms/milliliter, which represents the concentration of antibiotic required to prevent growth in vitro.

References

Wainer, H. (2009). A Centenary Celebration for Will Burtin: A Pioneer of Scientific Visualization. Chance, 22(1), 51-55. https://chance.amstat.org/2009/02/visrev221/

Wainer, H. (2009). Visual Revelations: Pictures at an Exhibition. Chance, 22(2), 46–54. https://chance.amstat.org/2009/04/visrev222/

Wainer, H. (2014). Medical Illuminations: Using Evidence, Visualization and Statistical Thinking to Improve Healthcare.

Examples


data(antibiotic)
lucid(antibiotic)
#>                      bacteria penicillin streptomycin neomycin gramstain
#> 1        Aerobacter aerogenes    870             1       1.6         neg
#> 2            Brucella abortus      1             2       0.02        neg
#> 3            Escherichia coli    100             0.4     0.1         neg
#> 4       Klebsiella pneumoniae    850             1.2     1           neg
#> 5  Mycobacterium tuberculosis    800             5       2           neg
#> 6            Proteus vulgaris      3             0.1     0.1         neg
#> 7      Pseudomonas aeruginosa    850             2       0.4         neg
#> 8          Salmonella typhosa      1             0.4     0.008       neg
#> 9   Salmonella schottmuelleri     10             0.8     0.09        neg
#> 10         Bacillis anthracis      0.001         0.01    0.007       pos
#> 11     Diplococcus pneumoniae      0.005        11      10           pos
#> 12       Staphylococcus albus      0.007         0.1     0.001       pos
#> 13      Staphylococcus aureus      0.03          0.03    0.001       pos
#> 14      Streptococcus fecalis      1             1       0.1         pos
#> 15  Streptococcus hemolyticus      0.001        14      10           pos
#> 16     Streptococcus viridans      0.005        10      40           pos

if (FALSE) { # \dontrun{
# Plot the data similar to Fig 2.14 of Wainer's book, "Medical Illuminations"

require(lattice)
require(reshape2)

# Use log10 transform
dat <- transform(antibiotic,
                 penicillin=log10(penicillin),
                 streptomycin=log10(streptomycin),
                 neomycin=log10(neomycin))
dat <- transform(dat, sgn = ifelse(dat$gramstain=="neg", "-", "+"))
dat <- transform(dat,
                 bacteria = paste(bacteria, sgn))
dat <- transform(dat, bacteria=reorder(bacteria, -penicillin))

dat <- melt(dat)

op <- tpg <- trellis.par.get()
tpg$superpose.symbol$pch <- toupper(substring(levels(dat$variable),1,1))
tpg$superpose.symbol$col <- c("darkgreen","purple","orange")
trellis.par.set(tpg)
dotplot(bacteria ~ value, data=dat, group=variable,
        cex=2,
        scales=list(x=list(at= -3:3,
                      labels=c('.001', '.01', '.1', '1', '10', '100', '1000'))),
        main="Bacterial response to Neomycin, Streptomycin, and Penicillin",
        xlab="Minimum Inhibitory Concentration (mg/L)")

trellis.par.set(op)

} # }